
ms_active_directory
Release 1.9.1

Azaria Zornberg

Nov 19, 2021

CONTENTS

1 Documentation vs. Examples 3

2 Contents 5
2.1 The ms_active_directory project . 5

i

ii

ms_active_directory, Release 1.9.1

ms_active_directory is a pure Python client library for developing tools for and integrations with Microsoft Active
Directory domains. It is mostly platform independent, with optional features that do have platform specific behavior.

It includes utilities for discovering and searching domains, as well as joining computers to them, modifying entities
within them, and looking up information about users, groups, computers, and other objects.

It does its best to abstract away the nuances and quirks of Active Directory, and allow users to easily perform common
operations in a highly efficient manner that is highly secure by default, while also being flexible enough for power users
to perform complex operations not supported by the library in pre-made functions.

This library tries to conform to all Active Directory standard defaults in terms of object locations, entity object classes,
encryption types used, DNS names used for computers, etc.

CONTENTS 1

ms_active_directory, Release 1.9.1

2 CONTENTS

CHAPTER

ONE

DOCUMENTATION VS. EXAMPLES

If you’re looking for examples of using the library, there’s a good number of examples in the github repo’s README
file and the repo itself, which help to provide concrete demonstrations of how to use the functions documented here.

The documentation here is based on the docstrings in the repo and the type annotations in the repo, which means that
it’s incredibly detailed and thorough. A point of pride for this library is the complete type annotation of functions and
highly descriptive docstrings for every user-facing function.

3

ms_active_directory, Release 1.9.1

4 Chapter 1. Documentation vs. Examples

CHAPTER

TWO

CONTENTS

2.1 The ms_active_directory project

ms_active_directory is a library designed to make integrations with Active Directory domains, and tools for man-
aging them, easier to write.

There are a large number of protocols that can be used to interact with Active Directory domains, but a lot of them
can be difficult to use when designing a tool or integration from scratch. They can be confusing to use because the
protocols in most cases were not designed specifically for Microsoft Active Directory, and so there will be behavioral
quirks and slightly differences when using them with Active Directory.

The primary goal of this library is to allow users, whether they be SysAdmins, DevOps Engineers, or Software Engi-
neers developing a new product that integrates with Active Directory, to abstract away the need to deeply understand
the different options for integration and their quirks.

The secondary goal of this library is platform independence. There are a lot of tools for Active Directory that are
windows-only, or that behave differently on different operating systems due to using system libraries. In order to achieve
some amount of platform independence, this library works out of the box using pure python and builds primarily
on other python packages that are pure python such as ldap3. However, certain optional features (e.g. Kerberos
negotiation) will require python packages that build upon system libraries; this is done in order to avoid reimplementing
complex security-related features, and to instead use well-trusted and verified implementations of them.

2.1.1 License

The ms_active_directory library is distributed under the MIT License.

This means that users of this library may freely use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software. The only condition is that the appropriate copyright notice be included with any copies or
substantial portions of the library.

2.1.2 RFCs Compliance

This library largely utilizes the LDAP protocol for communication, as well as DNS. Utilization of those protocols is
done via other python libraries. In particular, ldap3 is used for LDAP communication, and so all LDAP communication
is compliant with RFCs 4510-4518.

Generation of kerberos keys for Active Directory, and parsing of kerberos keys, according to various kerberos encryption
types is done in compliance with RFC4757, RFC1964, RFC8429, RFC3962, and a variety of other RFCs that define
how kerberos keys are to be derived and encoded for different encryption types. However, actual kerberos negotiation
relies on the underlying OS mechanism that implements GSSAPI, and so this library makes no claim to enforce specific
RFC compliance in the actual negotiation, as even different versions of the same OS have significant differences (e.g.
Ubuntu 14 vs. 18).

5

ms_active_directory, Release 1.9.1

2.1.3 PEP8 Compliance

ms_active_directory is PEP8 compliant, excluding line length. PEP8 (https://www.python.org/dev/peps/
pep-0008/) is the standard coding style guide for the Python Standard Library and for many other Python projects.
It provides a consistent way of writing code for maintainability and readability following the principle that “software
is more read than written”.

Type hints are also utilized in all outwardly exposed classes and functions implemented in the library, and nearly all
functions overall.

2.1.4 Home Page

The home page of the ms_active_directory project is https://github.com/zorn96/ms_active_directory

2.1.5 Documentation

Documentation is available at https://ms-active-directory.readthedocs.io/. You can download a PDF copy of the manual
at https://media.readthedocs.org/pdf/ms-active-directory/stable/ms-active-directory.pdf

2.1.6 Documentation vs. Examples

If you’re looking for examples of using the library, there’s a good number of examples in the github repo’s README
file and the repo itself, which help to provide concrete demonstrations of how to use the functions documented here.

The documentation is based on the docstrings in the repo and the type annotations in the repo, which means that it’s
incredibly detailed and thorough. A point of pride for this library is the complete type annotation of functions and
highly descriptive docstrings for every user-facing function.

2.1.7 Download

The ms_active_directory package can be downloaded at https://pypi.org/project/ms-active-directory/.

2.1.8 Install

Install with pip install ms_active_directory. If needed the library installs the pyasn1 package, ldap3, dnspython,
and pycryptodome. There are some other packages that may be installed but they’re fairly standard (e.g. six). If
you need Kerberos support you must install the gssapi package, or the winkerberos package if you’re windows in a
setup where gssapi does not work. These packages may require other system libraries be installed.

2.1.9 GIT repository

You can download the latest released source code at https://github.com/zorn96/ms_active_directory/tree/main

6 Chapter 2. Contents

https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/
https://github.com/zorn96/ms_active_directory
https://ms-active-directory.readthedocs.io/
https://media.readthedocs.org/pdf/ms-active-directory/stable/ms-active-directory.pdf
https://pypi.org/project/ms-active-directory/
https://github.com/zorn96/ms_active_directory/tree/main

ms_active_directory, Release 1.9.1

2.1.10 Contributing to this project

ms_active_directory source is hosted on github. You can contribute to the project on https://github.com/zorn96/
ms_active_directory forking the project and submitting a pull request with your modifications.

2.1.11 Support

You can submit support tickets on https://github.com/zorn96/ms_active_directory/issues/new

2.1.12 Contact me

For information and suggestions you can contact me at a.zornberg96@gmail.com. You can also open a support ticket
on https://github.com/zorn96/ms_active_directory/issues/new

2.1.13 Donate

If you want to keep this project up and running you can send me an Amazon gift card. I will use it to improve my skills
in the Information and Communication technologies.

2.1.14 Acknowledgements and Shout-outs

• Ilya Etingof, the author of the pyasn1 package for his excellent work and support.

• Giovanni Cannata for his work on the ldap3 package, which is where I got my start on learning about this area,
and which is an integral part of this package.

• GitHub for providing the free source repository space and tools used to develop this project.

• VMWare for providing the free licenses used to run windows VMs for developing and testing this library.

2.1.15 Documentation Contents

Primary Objects in ms_active_directory

The following are the references for objects that you will interact with in order to exercise the majority of the function-
ality of the library.

These pages will often reference each other as well, as they interact heavily and these objects can produce each other.

ADDomain Objects

Help on the ADDomain from module ms_active_directory.core.ad_domain follows.

2.1. The ms_active_directory project 7

https://github.com/zorn96/ms_active_directory
https://github.com/zorn96/ms_active_directory
https://github.com/zorn96/ms_active_directory/issues/new
mailto:a.zornberg96@gmail.com
https://github.com/zorn96/ms_active_directory/issues/new

ms_active_directory, Release 1.9.1

Creating an ADDomain object

Discovery of a domain’s resources and subsequent creation of sessions with the domain for the purposes of lookups,
modifications, and such is done using an ADDomain object:

class ADDomain(builtins.object)

__init__(self, domain: str, site: str = None,
ldap_servers_or_uris: List = None,
kerberos_uris: List[str] = None,
encrypt_connections: bool = True,
ca_certificates_file_path: str = None,
discover_ldap_servers: bool = True,
discover_kerberos_servers: bool = True,
dns_nameservers: List[str] = None,
source_ip: str = None,
netbios_name: str = None,
auto_configure_kerberos_client: bool = False)

Initializes an interface for defining an AD domain and interacting with it.

:param domain: The DNS name of the Active Directory domain that this object␣
→˓represents.

:param site: The Active Directory site to operate within. This is only relevant␣
→˓if LDAP or

kerberos servers are discovered in DNS, as there's site-specific␣
→˓records.

If set, only hosts within the specified site will be used.
:param ldap_servers_or_uris: A list of either Server objects from the ldap3␣

→˓library, or
string LDAP uris. If specified, they will be used␣

→˓to establish
sessions with the domain.

:param kerberos_uris: A list of string kerberos server uris. These can be IPs␣
→˓(and the default

kerberos port of 88 will be used) or IP:port combinations.
:param encrypt_connections: Whether or not LDAP connections with the domain will␣

→˓be secured
using TLS. This must be True for join functionality␣

→˓to work,
as passwords can only be set over secure connections.
If not specified, defaults to True. If LDAP server␣

→˓objects are
provided with ssl enabled or ldaps:// uris are␣

→˓provided, then
connections to those servers will be encrypted␣

→˓because of the
inherent behavior of such configurations.

:param ca_certificates_file_path: A path to CA certificates to be used to␣
→˓establish trust

with LDAP servers when securing connections.␣
→˓If not

specified, then TLS will not check the peer␣
→˓certificate.

(continues on next page)

8 Chapter 2. Contents

ms_active_directory, Release 1.9.1

(continued from previous page)

If LDAP server objects are specified, then␣
→˓their TLS

settings will be used rather than anything set␣
→˓in this

variable. It is only used when discovering␣
→˓servers or

using string URIs, so Server objects can be␣
→˓used if

different CAs sign different servers'␣
→˓certificates

due to regional CAs or something similar.
If not specified, defaults to None.

:param discover_ldap_servers: If true, and LDAP servers/uris are not specified,␣
→˓then LDAP

servers for the domain will be discovered in DNS.
If not specified, defaults to True.

:param discover_kerberos_servers: If true, and kerberos uris are not specified,␣
→˓then kerberos

servers for the domain will be discovered in␣
→˓DNS.

If not specified, defaults to True.
:param dns_nameservers: A list of strings indicating the IP addresses of DNS␣

→˓servers to use
when discovering servers for the domain. These may be␣

→˓IPv4 or IPv6
addresses.
If not specified, defaults to what's configured in /etc/

→˓resolv.conf on
POSIX systems, and extracting nameservers from registry␣

→˓keys on windows.
Defaults to None.

:param source_ip: A source IP address to use for both DNS and LDAP connections␣
→˓established for

this domain. If not specified, defaults to automatic␣
→˓assignment of IP using

underlying system networking.
Defaults to None.

:param netbios_name: The netbios name of this domain, which is relevant for a␣
→˓variety of functions.

If this is set, then we won't search the domain for the␣
→˓information.

This can be set by users, but isn't needed. It's primarily␣
→˓here to avoid

extra lookups when creating ADDomain objects from␣
→˓ADTrustedDomain objects, as

the netbios name is already known.
:param auto_configure_kerberos_client: If true, automatically configure the␣

→˓local system to enable kerberos
communication with the domain.

As can be seen, creating a domain is fairly flexible. The only actual required parameter is the domain’s dns name. But
if you need to specify a site to confine searches you can. If you’re running in a container in a multi-tenant network
environment, you can configure your dns nameservers and source IP as needed. You can specify what servers you want

2.1. The ms_active_directory project 9

ms_active_directory, Release 1.9.1

to connect to, or let the library discover the closest servers. There’s options for security.

It’s very simple at its simplest, while still being very flexible.

Creating a connection with the ADDomain

Once you have an ADDomain, you probably want to create a connection to it. Connections can be made as a user or as
a computer. Functionally, computers act as users, but the functions to create connections as a computer provide some
additional helpful checks based on restrictions that AD applies to computers.

There’s two ways you can create a connection. The first is creating an ADSession object, which is a wrapper around
an LDAP connection that provides a lot of useful functions, like those for finding users, groups, etc. It’s recommended
that you use this for most use cases, as it abstracts away many complexities:

create_session_as_computer(self, computer_name: str, computer_password: str = None,
check_name_format: bool = True, authentication_mechanism: str␣

→˓= 'GSSAPI',
**kwargs) -> ms_active_directory.core.ad_session.ADSession

Create a session with AD domain authenticated as the specified computer.

:param computer_name: The name of the computer to use when authenticating with the␣
→˓domain.

:param computer_password: Optional, the password of the computer to use when␣
→˓authenticating with the domain.

If using an authentication mechanism like NTLM, this must␣
→˓be specified. But for

authentication mechanisms such as kerberos or external,␣
→˓either `sasl_credentials`

can be specified as a keyword argument or default system␣
→˓credentials will be used

in accordance with the auth mechanism.
:param check_name_format: If True, the `computer_name` will be processed to try and␣

→˓format it based on the
authentication mechanism in use. For NTLM we will try to␣

→˓format it as
`domain`\`computer_name`, and for Kerberos/GSSAPI we will␣

→˓try to format is ass
`computer_name`@`domain`.
Defaults to True.

:param authentication_mechanism: An LDAP authentication mechanism or SASL mechanism.␣
→˓If 'SASL' is specified,

then the keyword argument `sasl_mechanism` must␣
→˓also be specified. Valid values

include all authentication mechanisms and SASL␣
→˓mechanisms from the ldap3

library, such as SIMPLE, NTLM, KERBEROS, etc.
:returns: An ADSession object representing a connection with the domain.

create_session_as_user(self, user: str = None, password: str = None, authentication_
→˓mechanism: str = None,

**kwargs) -> ms_active_directory.core.ad_session.ADSession
Create a session with AD domain authenticated as the specified user.

(continues on next page)

10 Chapter 2. Contents

ms_active_directory, Release 1.9.1

(continued from previous page)

:param user: The name of the user to use when authenticating with the domain. This␣
→˓should be formatted based

on the authentication mechanism. For example, kerberos authentication␣
→˓expects username@domain,

NTLM expects domain\\username, and simple authentication can use a␣
→˓distinguished name,

username@domain, or other formats based on your domain's settings.
If not specified, anonymous authentication will be used. If specified,␣

→˓SIMPLE authentication
will be used by default if authentication_mechanism is not specified.

:param password: The password to use when authenticating with the domain.
If not specified, anonymous authentication will be used. If␣

→˓specified, SIMPLE authentication
will be used by default if authentication_mechanism is not␣

→˓specified.
:param authentication_mechanism: An LDAP authentication mechanism or SASL mechanism.␣

→˓If 'SASL' is specified,
then the keyword argument `sasl_mechanism` must␣

→˓also be specified. Valid values
include all authentication mechanisms and SASL␣

→˓mechanisms from the ldap3
library, such as SIMPLE, NTLM, KERBEROS, etc.

:param kwargs: Additional keyword arguments can be specified for any of the␣
→˓arguments to an ldap3 Connection

object and they will be used. This can be used to set things like␣
→˓`client_strategy` or

`pool_name`.
:return: An ADSession object representing a connection with the domain.

However, you can also create a simple LDAP connection - this will return a ldap3.Connection object. You can then
treat it like any other LDAP connection, and you’ll need to form filters and such yourself. If you do this, you should
consult the ldap3 documentation on how Connection objects are used. To do this you can call either of the following
functions:

create_ldap_connection_as_computer(self, computer_name: str, computer_password: str =␣
→˓None,

check_name_format: bool = True, authentication_
→˓mechanism: str = 'GSSAPI',

**kwargs) -> ldap3.core.connection.Connection
Create an LDAP connection with AD domain authenticated as the specified computer.

:param computer_name: The name of the computer to use when authenticating with the␣
→˓domain.

:param computer_password: Optional, the password of the computer to use when␣
→˓authenticating with the domain.

If using an authentication mechanism like NTLM, this must␣
→˓be specified. But for

authentication mechanisms such as kerberos or external,␣
→˓either `sasl_credentials`

can be specified as a keyword argument or default system␣
→˓credentials will be used

(continues on next page)

2.1. The ms_active_directory project 11

ms_active_directory, Release 1.9.1

(continued from previous page)

in accordance with the auth mechanism.
:param check_name_format: If True, the `computer_name` will be processed to try and␣

→˓format it based on the
authentication mechanism in use. For NTLM we will try to␣

→˓format it as
`domain`\`computer_name`, and for Kerberos/GSSAPI we will␣

→˓try to format is ass
`computer_name`@`domain`.
Defaults to True.

:param authentication_mechanism: An LDAP authentication mechanism or SASL mechanism.␣
→˓If 'SASL' is specified,

then the keyword argument `sasl_mechanism` must␣
→˓also be specified. Valid values

include all authentication mechanisms and SASL␣
→˓mechanisms from the ldap3

library, such as SIMPLE, NTLM, KERBEROS, etc.
:returns: A Connection object representing a ldap connection with the domain.

create_ldap_connection_as_user(self, user: str = None, password: str = None,␣
→˓authentication_mechanism: str = None,

**kwargs) -> ldap3.core.connection.Connection
Create an LDAP connection with AD domain authenticated as the specified user.

:param user: The name of the user to use when authenticating with the domain. This␣
→˓should be formatted based

on the authentication mechanism. For example, kerberos authentication␣
→˓expects username@domain,

NTLM expects domain\\username, and simple authentication can use a␣
→˓distinguished name,

username@domain, or other formats based on your domain's settings.
If not specified, anonymous authentication will be used. If specified,␣

→˓SIMPLE authentication
will be used by default if authentication_mechanism is not specified.

:param password: The password to use when authenticating with the domain.
If not specified, anonymous authentication will be used. If␣

→˓specified, SIMPLE authentication
will be used by default if authentication_mechanism is not␣

→˓specified.
:param authentication_mechanism: An LDAP authentication mechanism or SASL mechanism.␣

→˓If 'SASL' is specified,
then the keyword argument `sasl_mechanism` must␣

→˓also be specified. Valid values
include all authentication mechanisms and SASL␣

→˓mechanisms from the ldap3
library, such as SIMPLE, NTLM, KERBEROS, etc.

:param kwargs: Additional keyword arguments can be specified for any of the␣
→˓arguments to an ldap3 Connection

object and they will be used. This can be used to set things like␣
→˓`client_strategy` or

`pool_name`.
:return: An ldap3 Connection object representing a connection with the domain.

12 Chapter 2. Contents

ms_active_directory, Release 1.9.1

Discovering domain properties

ADDomain objects provide a number of functions for discovering basic information about a domain. Most of these can
be done without authenticating with the domain as a user or computer (though you can reuse such authentication if
desired) because they may inform your decisions on how to authenticate.

For example, you can check the time of the domain, and there’s a helper for seeing if your local system time is close to
the domain’s time, which is important for kerberos authentication. You can also discover supported SASL mechanisms,
the domain’s functional level, etc.

Note: All of these functions also have equivalents within the ADSession object that can be called, so if you’re un-
sure what information is guarded by authentication requirements within your domain, you can use your authenticated
ADSession instead of these.

The functions are as follows:

find_current_time(self, ldap_connection: ldap3.core.connection.Connection = None) ->␣
→˓datetime.datetime

Find the current time for this domain. This is useful for detecting drift that can␣
→˓cause

Kerberos and TLS issues.
Optionally, an existing connection can be used. If one is not specified, an␣

→˓anonymous LDAP
connection will be created and used.
:param ldap_connection: An ldap3 connection to the domain, optional.
:returns: A datetime object representing the time.

find_functional_level(self, ldap_connection: ldap3.core.connection.Connection = None) ->
→˓'domainFunctionality'

Find the functional level for this domain.
Optionally, an existing connection can be used. If one is not specified, an␣

→˓anonymous LDAP
connection will be created and used.
:param ldap_connection: An ldap3 connection to the domain, optional.
:returns: An ADVersion enum indicating the functional level.

find_netbios_name(self, ldap_connection: ldap3.core.connection.Connection = None, force_
→˓refresh: bool = False) -> str

Find the netbios name for this domain. Renaming a domain is a huge task and is␣
→˓incredibly rare,

so this information is cached when first read, and it only re-read if specifically␣
→˓requested.

Optionally, an existing connection can be used. If one is not specified, an␣
→˓anonymous LDAP

connection will be created and used.

:param ldap_connection: An ldap3 connection to the domain, optional.
:param force_refresh: If set to true, the domain will be searched for the␣

→˓information even if
it is already cached. Defaults to false.

:returns: A string indicating the netbios name of the domain.

(continues on next page)

2.1. The ms_active_directory project 13

ms_active_directory, Release 1.9.1

(continued from previous page)

find_supported_sasl_mechanisms(self, ldap_connection: ldap3.core.connection.Connection =␣
→˓None) -> List[str]

Find the supported SASL mechanisms for this domain.
Optionally, an existing connection can be used. If one is not specified, an␣

→˓anonymous LDAP
connection will be created and used.
:param ldap_connection: An ldap3 connection to the domain, optional.
:returns: A list of strings indicating the supported SASL mechanisms for the domain.

ex: ['GSSAPI', 'GSS-SPNEGO', 'EXTERNAL']

find_trusted_domains(self, ldap_connection: ldap3.core.connection.Connection = None) ->␣
→˓List[ForwardRef('ADTrustedDomain')]

Find the trusted domains for this domain.
An LDAP connection is technically optional, as some domains allow enumeration of␣

→˓trust
relationships by anonymous users, but a connection is likely needed. If one is not␣

→˓specified,
an anonymous LDAP connection will be created and used.

:param ldap_connection: An ldap3 connection to the domain, optional.
:returns: A list of ADTrustedDomain objects

is_close_in_time_to_localhost(self, ldap_connection: ldap3.core.connection.Connection =␣
→˓None, allowed_drift_seconds: int = None) -> bool

Check if we're close in time to the domain.
This is primarily useful for kerberos and TLS negotiation health.
Optionally, an existing connection can be used. If one is not specified, an␣

→˓anonymous LDAP
connection will be created and used.
:param ldap_connection: An ldap3 connection to the domain, optional.
:param allowed_drift_seconds: The number of seconds considered "close", defaults to␣

→˓5 minutes.
5 minutes is the standard allowable drift for kerberos.

:returns: A boolean indicating whether we're within allowed_drift_seconds seconds of␣
→˓the domain time.

Managing discovered domain resources

If you relied on auto-discovery to find kerberos and LDAP servers in the domain, you can retrieve the information on
what was discovered or redo the discovery if you believe network conditions may have changed or new servers may
have been added.

You can retrieve URIs for both, and for LDAP servers you can also retrieve ldap3.Server objects if desired. You can
also set the LDAP or kerberos servers for the domain if you wish to manually filter out or add in specific servers or are
generally controlling the servers yourself.

The functions to do so are as follows:

get_kerberos_uris(self) -> List[str]

(continues on next page)

14 Chapter 2. Contents

ms_active_directory, Release 1.9.1

(continued from previous page)

get_ldap_servers(self) -> List[ldap3.core.server.Server]

get_ldap_uris(self) -> List[str]

refresh_kerberos_server_discovery(self)
Re-discover Kerberos servers in DNS for the domain and redo the sorting by RTT.
This can update our list of KDCs for future use by callers, allowing faster servers␣

→˓to be
moved up in priority, unavailable servers to be removed from the list, and␣

→˓previously unavailable
servers to be added.

refresh_ldap_server_discovery(self)
Re-discover LDAP servers in DNS for the domain and redo the sorting by RTT.
This can update our list of LDAP servers for future connections, allowing faster␣

→˓servers to be
moved up in priority, unavailable servers to be removed from the list, and␣

→˓previously unavailable
servers to be added.

set_kerberos_uris(self, kerberos_uris: List)
Sets our kerberos server uris

set_ldap_servers_or_uris(self, ldap_servers_or_uris: List)
Set our list of LDAP servers or LDAP URIs. The list provided can be a list of
Server objects, URIs, or a mixture.

Joining a domain

You can join the local machine to a domain using an ADDomain object. This action will create a computer object in the
domain representing the local machine.

You can specify a lot of properties about the computer to be created, but by default it will be named after the local
machine’s hostname (if it’s a valid AD name) and created in AD’s default Computers container. A strong password is
set for the computer that is 120 characters long and random, strong encryption types are enabled, and Kerberos keys
will be generated for the computer and written to the standard default system location (/etc/krb5.keytab).

A ManagedADComputer object is returned which has many helper functions for reading information about the created
computer and managing its keys.

To join a domain and create a new computer, use the following function:

join(self, admin_username: str, admin_password: str, authentication_mechanism: str =
→˓'SIMPLE',

computer_name: str = None, computer_location: str = None, computer_password: str =␣
→˓None,

computer_encryption_types: List[Union[str, ms_active_directory.environment.security.
→˓security_config_constants.ADEncryptionType]] = None,

computer_hostnames: List[str] = None, computer_services: List[str] = None,
supports_legacy_behavior: bool = False, computer_key_file_path: str = '/etc/krb5.

→˓keytab',
**additional_account_attributes) -> ms_active_directory.core.managed_ad_objects.

→˓ManagedADComputer (continues on next page)

2.1. The ms_active_directory project 15

ms_active_directory, Release 1.9.1

(continued from previous page)

A super simple 'join the domain' function that requires minimal input - just admin␣
→˓user credentials

to use in the join process.
Given those basic inputs, the domain's settings are used to establish a connection,␣

→˓and an account is made
with strong security settings. The account's attributes follow AD naming conventions␣

→˓based on the computer's
hostname by default.
:param admin_username: The username of a user or computer with the rights to create␣

→˓the computer.
This username should be formatted based on the authentication␣

→˓protocol being used.
For example, DOMAIN\username for NTLM as opposed to␣

→˓username@DOMAIN for GSSAPI, or
a distinguished name for SIMPLE.
If `old_computer_password` is specified, then this account␣

→˓only needs permission to
change the password of the computer being taken over, which␣

→˓is different from the reset
password permission.

:param admin_password: The password for the user. Optional, as SASL authentication␣
→˓mechanisms can use

`sasl_credentials` specified as a keyword argument, and␣
→˓things like KERBEROS will use

default system kerberos credentials if they're available.
:param authentication_mechanism: An LDAP authentication mechanism or SASL mechanism.␣

→˓If 'SASL' is specified,
then the keyword argument `sasl_mechanism` must␣

→˓also be specified. Valid values
include all authentication mechanisms and SASL␣

→˓mechanisms from the ldap3
library, such as SIMPLE, NTLM, KERBEROS, etc.

:param computer_name: The name of the computer to take over in the domain. This␣
→˓should be the sAMAccountName

of the computer, though if computer has a trailing $ in its␣
→˓sAMAccountName and that is

omitted, that's ok. If not specified, we will attempt to find␣
→˓a computer with a name

matching the local system's hostname.
:param computer_location: The location in which to create the computer. This may be␣

→˓specified as an LDAP-style
relative distinguished name (e.g. OU=ServiceMachines,

→˓OU=Machines) or a windows path
style canonical name (e.g. example.com/Machines/

→˓ServiceMachines).
If not specified, defaults to CN=Computers which is the␣

→˓standard default for AD.
:param computer_password: The password to set for the computer when taking it over.␣

→˓If not specified, a random
120 character password will be generated and set.

:param computer_encryption_types: A list of encryption types, based on the␣
→˓ADEncryptionType enum, to enable on (continues on next page)

16 Chapter 2. Contents

ms_active_directory, Release 1.9.1

(continued from previous page)

the account created. These may be strings or enums;
→˓ if they are strings,

they should be strings of the encryption types as␣
→˓written in kerberos

RFCs or in AD management tools, and we will try to␣
→˓map them to enums and

raise an error if they don't match any supported␣
→˓values.

AES256-SHA1, AES128-SHA1, and RC4-HMAC encryption␣
→˓types are supported. DES

encryption types aren not.
If not specified, defaults to [AES256-SHA1].

:param computer_hostnames: Hostnames to set for the computer. These will be used to␣
→˓set the dns hostname

attribute in AD. If not specified, the computer hostnames␣
→˓will default to

[`computer_name`, `computer_name`.`domain`] which is the␣
→˓AD standard default.

:param computer_services: Services to enable on the computers hostnames. These␣
→˓services dictate what clients

can get kerberos tickets for when communicating with this␣
→˓computer, and this property

is used with `computer_hostnames` to set the service␣
→˓principal names for the computer.

For example, having `nfs` specified as a service principal␣
→˓is necessary if you want

to run an NFS server on this computer and have clients get␣
→˓kerberos tickets for

mounting shares; having `ssh` specified as a service␣
→˓principal is necessary for

clients to request kerberos tickets for sshing to the␣
→˓computer.

If not specified, defaults to `HOST` which is the standard␣
→˓AD default service.

`HOST` covers a wide variety of services, including `cifs`,
→˓ `ssh`, and many others

depending on your domain. Determining exactly what␣
→˓services are covered by `HOST`

in your domain requires checking the aliases set on a␣
→˓domain controller.

:param supports_legacy_behavior: If `True`, then an error will be raised if the␣
→˓computer name is longer than

15 characters (not including the trailing $). This␣
→˓is because various older

systems such as NTLM, certain UNC path applications,
→˓ Netbios, etc. cannot

use names longer than 15 characters. This name␣
→˓cannot be changed after

creation, so this is important to control at␣
→˓creation time.

If not specified, defaults to `False`.
:param computer_key_file_path: The path of where to write the keytab file for the␣

→˓computer after taking it over. (continues on next page)

2.1. The ms_active_directory project 17

ms_active_directory, Release 1.9.1

(continued from previous page)

This will include keys for both user and server keys␣
→˓for the computer.

If not specified, defaults to /etc/krb5.keytab
:param additional_account_attributes: Additional keyword argument can be specified␣

→˓to set other LDAP attributes
of the computer that are not covered above, or␣

→˓where the above controls
are not sufficiently granular. For example,␣

→˓`userAccountControl` could
be used to set the user account control values␣

→˓for the computer if it's
desired to set it differently from the default␣

→˓(e.g. create a computer
in a disabled state and enable it later).

:returns: A ManagedADComputer object representing the computer created.

A domain can also be joined by taking over an existing computer. This is convenient for setups where the computer is
pre-created with a lot of settings so that the machines joining don’t need to know what attribute values to set.

Taking over an existing computer returns the same form of ManagedADComputer object, and still writes kerberos keys
to the local file system and such, but there’s no option to specify things like services and dns hostnames as those are
read from the existing computer.

To take over a computer in this way, use the following function:

join_by_taking_over_existing_computer(self, admin_username: str, admin_password: str =␣
→˓None,

authentication_mechanism: str = 'SIMPLE', computer_
→˓name: str = None,

computer_password: str = None, old_computer_
→˓password: str = None,

computer_key_file_path: str = '/etc/krb5.keytab',
**additional_connection_attributes) -> ms_active_

→˓directory.core.managed_ad_objects.ManagedADComputer

A super simple 'join the domain' function that requires minimal input - just admin␣
→˓user credentials

to use in the join process.
Given those basic inputs, the domain's settings are used to establish a connection,␣

→˓and an account is taken over
based on inputs. The account's attributes are then read and used to generate␣

→˓kerberos keys and set other attributes
of the returned object.
:param admin_username: The username of a user or computer with the rights to reset␣

→˓the password of the computer
being taken over.
This username should be formatted based on the authentication␣

→˓protocol being used.
For example, DOMAIN\username for NTLM as opposed to␣

→˓username@DOMAIN for GSSAPI, or
a distinguished name for SIMPLE.
If `old_computer_password` is specified, then this account␣

→˓only needs permission to
(continues on next page)

18 Chapter 2. Contents

ms_active_directory, Release 1.9.1

(continued from previous page)

change the password of the computer being taken over, which␣
→˓is different from the reset

password permission.
:param admin_password: The password for the user. Optional, as SASL authentication␣

→˓mechanisms can use
`sasl_credentials` specified as a keyword argument, and␣

→˓things like KERBEROS will use
default system kerberos credentials if they're available.

:param authentication_mechanism: An LDAP authentication mechanism or SASL mechanism.␣
→˓If 'SASL' is specified,

then the keyword argument `sasl_mechanism` must␣
→˓also be specified. Valid values

include all authentication mechanisms and SASL␣
→˓mechanisms from the ldap3

library, such as SIMPLE, NTLM, KERBEROS, etc.
:param computer_name: The name of the computer to take over in the domain. This␣

→˓should be the sAMAccountName
of the computer, though if computer has a trailing $ in its␣

→˓sAMAccountName and that is
omitted, that's ok. If not specified, we will attempt to find␣

→˓a computer with a name
matching the local system's hostname.

:param computer_password: The password to set for the computer when taking it over.␣
→˓If not specified, a random

120 character password will be generated and set.
:param old_computer_password: The current password of the computer being taken over.␣

→˓If specified, the action
of taking over the computer will use a "change password

→˓" operation, which is less
privileged than a "reset password" operation. So␣

→˓specifying this reduces the
permissions needed by the user specified.

:param computer_key_file_path: The path of where to write the keytab file for the␣
→˓computer after taking it over.

This will include keys for both user and server keys␣
→˓for the computer.

If not specified, defaults to /etc/krb5.keytab
:param additional_connection_attributes: Additional keyword arguments may be␣

→˓specified for any properties of
the `Connection` object from the `ldap3`␣

→˓library that is desired to
be set on the connection used in the␣

→˓session created for taking over
the computer. Examples include `sasl_

→˓credentials`, `client_strategy`,
`cred_store`, and `pool_lifetime`.

:returns: A ManagedADComputer object representing the computer taken over.

Help on class ADTrustedDomain in module ms_active_directory.core.ad_domain:

class ADTrustedDomain(builtins.object)

ADTrustedDomain(primary_domain: ms_active_directory.core.ad_domain.ADDomain, trust_ldap_attributes:
dict)

2.1. The ms_active_directory project 19

ms_active_directory, Release 1.9.1

Methods defined here:

__init__(self, primary_domain: ms_active_directory.core.ad_domain.ADDomain, trust_ldap_attributes: dict)
ADTrustedDomain objects represent a trustedDomain object found within an ADDomain.

:param primary_domain: An ADDomain object representing the domain where this trusted domain
object was found.
:param trust_ldap_attributes: A dictionary of LDAP attributes for the trustedDomain.

__repr__(self)
Return repr(self).

__str__(self)
Return str(self).

convert_to_ad_domain(self, site: str = None, ldap_servers_or_uris: List = None, kerberos_uris: List[str] =
None, encrypt_connections: bool = True, ca_certificates_file_path: str = None, discover_ldap_servers: bool =
True, discover_kerberos_servers: bool = True, dns_nameservers: List[str] = None, source_ip: str = None) ->
ms_active_directory.core.ad_domain.ADDomain

Convert this AD domain trust to an ADDomain object. This takes all of the same keyword arguments
as creating an ADDomain object, and use the attributes of the primary domain where appropriate for
network settings.

:param site: The Active Directory site to operate within. This is only relevant if LDAP or
kerberos servers are discovered in DNS, as there’s site-specific records.
If set, only hosts within the specified site will be used.

:param ldap_servers_or_uris: A list of either Server objects from the ldap3 library, or
string LDAP uris. If specified, they will be used to establish
sessions with the domain.

:param kerberos_uris: A list of string kerberos server uris. These can be IPs (and the default
kerberos port of 88 will be used) or IP:port combinations.

:param encrypt_connections: Whether or not LDAP connections with the domain will be secured
using TLS. This must be True for join functionality to work,
as passwords can only be set over secure connections.
If not specified, defaults to True. If LDAP server objects are
provided with ssl enabled or ldaps:// uris are provided, then
connections to those servers will be encrypted because of the
inherent behavior of such configurations.

:param ca_certificates_file_path: A path to CA certificates to be used to establish trust
with LDAP servers when securing connections. If not
specified, then TLS will not check the peer certificate.
If LDAP server objects are specified, then their TLS
settings will be used rather than anything set in this
variable. It is only used when discovering servers or
using string URIs, so Server objects can be used if
different CAs sign different servers’ certificates

20 Chapter 2. Contents

ms_active_directory, Release 1.9.1

due to regional CAs or something similar.
If not specified, defaults to None.

:param discover_ldap_servers: If true, and LDAP servers/uris are not specified, then LDAP
servers for the domain will be discovered in DNS.
If not specified, defaults to True.

:param discover_kerberos_servers: If true, and kerberos uris are not specified, then kerberos
servers for the domain will be discovered in DNS.
If not specified, defaults to True.

:param dns_nameservers: A list of strings indicating the IP addresses of DNS servers to use
when discovering servers for the domain. These may be IPv4 or IPv6
addresses.
If not specified, defaults to the DNS nameservers configured in the
primary domain where this trusted domain was found because domains
that trust each other are mutually discoverable in each others’
DNS or must use a DNS that contains both of them.
If not specified and the primary domain has no nameservers set,
defaults to what’s configured in /etc/resolv.conf on POSIX systems,
and extracting nameservers from registry keys on windows.
Can be set to an empty list to force use of the system defaults even
when the primary domain has dns_nameservers set.

:param source_ip: A source IP address to use for both DNS and LDAP connections established for
this domain.
If not specified, defaults to the source IP used for the primary where
this trusted domain was found, because domains that trust each other are
mutually routable, and so the source IP used to talk to the primary domain
is assumed to also be the right default network identity for talking to
this domain.
If not specified and the primary domain has no source ip set, defaults to
automatic assignment of IP using underlying system networking.
Can be set to an empty string to force use of the system defaults even
when the primary domain has source_ip set.

:returns: An ADDomain object representing this trusted domain as a complete domain with the
corresponding functionality.

create_transfer_session_to_trusted_domain(self, ad_session: ms_active_directory.core.ad_session.ADSession,
converted_ad_domain: ms_active_directory.core.ad_domain.ADDomain = None, skip_validation: bool =
False) -> ms_active_directory.core.ad_session.ADSession

Create a session with this trusted domain that functionally transfers the authentication of a given session.
This is useful for transferring a kerberos/ntlm session to create new sessions for querying in trusted
domains
without needing to provide credentials ever time.

:param ad_session: The active directory session to transfer. This session will not be altered.
:param converted_ad_domain: Optional. If a caller wants to specify information like an AD site, or ldap

server preferences, or if the caller simply wants to avoid having DNS lookups
and RTT measurements done every single time they transfer a session because they
have a lot of sessions to transfer, then they can specify an ADDomain object

2.1. The ms_active_directory project 21

ms_active_directory, Release 1.9.1

that represents the converted ADTrustedDomain.
If not specified, an ADDomain will be created for the trusted domain during
transfer.

:param skip_validation: Optional. If set to False, validation checks about the trusted domain being an
AD domain

or the trusted domain trusting the primary domain for users originating from the
primary domain will be skipped. This can be set to True in scenarios where the trust
has been reconfigured on the trusted domain, but the primary domain has stale info,
to avoid needing to wait for changes to propagate to make use of the new trust.
If not specified, defaults to True.

:returns: An ADSession representing the transferred authentication to the trusted domain.
:raises: SessionTransferException If any validation fails when transferring the session.
:raises: Other LDAP exceptions if the attempt to bind the transfer session in the trusted domain fails due
to

authentication issues (e.g. trying to use a non-transitive trust when transferring a user that is
not from the primary domain, transferring across a one-way trust when skipping validation,
transferring to a domain using SID filtering to restrict cross-domain users)

get_fqdn(self) -> str
Returns the FQDN of the trusted domain.

get_netbios_name(self) -> str
Returns the netbios name of the trusted domain.

get_posix_offset(self) -> int
Returns the posix offset for the trust relationship. This is specific to the primary domain.

get_raw_trust_attributes_value(self) -> int
Returns the raw trust attributes value, which is a bitstring indicating properties of the trust.

is_active_directory_domain_trust(self) -> bool
Returns True if the trusted domain is an Active Directory domain.

is_bidirectional_trust(self) -> bool
Returns True if the trust is mutual, meaning the primary domain trusts users from the trusted domain, and
the trusted domain trusts users from the primary domain.

is_cross_forest_trust(self) -> bool
Returns True if the trust relationship is a cross-forest trust.

is_cross_organization_trust(self) -> bool
Returns True if the trust relationship is a cross-organization trust.

is_disabled(self) -> bool
Returns True if the trust relationship has been disabled.

is_findable_via_netlogon(self) -> bool

22 Chapter 2. Contents

ms_active_directory, Release 1.9.1

Returns True if the trusted domain is findable in netlogon and the trust works there.

is_in_same_forest_as_primary_domain(self) -> bool
Returns True if the trusted domain is in the same forest as the primary domain. For example,
both “americas.my-corp.net” and “emea.my-corp.net” might be subdomains within the “my-corp.net”
forest.

is_mit_trust(self) -> bool
Returns True if the trusted domain is an MIT Kerberos Realm.

is_non_active_directory_windows_trust(self) -> bool
Returns True if the trusted domain is a non-Active Directory windows domain.

is_transitive_trust(self) -> bool
Returns True if the trust relationship is transitive. If a relationship is transitive, then that means
that if A trusts principals from B, and B trusts principals from C, then A will also trust principals from C
even if it doesn’t explicitly know that C exists.
Cross-forest trusts are inherently transitive unless transitivity is disabled. Cross-domain trusts are not
inherently transitive.

is_trusted_by_primary_domain(self) -> bool
Returns True if the primary domain trusts users originating in the trusted domain.

mit_trust_uses_rc4_hmac_for(self) -> bool
Returns True to indicate that this trusted MIT Kerberos Realm can use RC4-HMAC encryption.
This is only relevant for MIT Kerberos Realms, and is a legacy attribute from a time when
RC4-HMAC was not widely adopted, AES128/AES256 weren’t standard in AD, and only the less secure
single-DES encryption mechanisms were shared between MIT and AD by default.

should_treat_as_external_trust(self) -> bool
Returns True if the trusted domain is configured such that it should be explicitly treated as
if the trusted domain is external to the forest of the primary domain, despite being within it.

trusts_primary_domain(self) -> bool
Returns True if the trusted domain trusts users originating in the primary domain.

uses_sid_filtering(self) -> bool
Returns True if this relationship employs SID filtering. This is common in forest trusts/transitive trusts
in order to ensure some level of control over which users from other domains are allowed to operate
within
the primary domain.

———————————————————————-
Data descriptors defined here:

__dict__
dictionary for instance variables (if defined)

2.1. The ms_active_directory project 23

ms_active_directory, Release 1.9.1

__weakref__
list of weak references to the object (if defined)

ADSession Objects

Help for the class ADSession in module ms_active_directory.core.ad_session follows:

Manually creating an ADSession

While it’s recommended that you create ADSession objects from ADDomain objects, you can manually create them
given a domain and an LDAP connection to it.

The function to do so is as follows:

class ADSession(builtins.object)
ADSession(ldap_connection: ldap3.core.connection.Connection, domain: 'ADDomain',␣

→˓search_paging_size: int = 100, trusted_domain_cache_lifetime_seconds: int = 86400)

Methods defined here:

__init__(self, ldap_connection: ldap3.core.connection.Connection, domain: 'ADDomain',
→˓ search_paging_size: int = 100, trusted_domain_cache_lifetime_seconds: int = 86400)

Create a session object for a connection to an AD domain.
Given an LDAP connection, a domain, and optional parameters relating to searches␣

→˓and multi-domain
functionality, create an ADSession object.

:param ldap_connection: An ldap3 Connection object representing the connection␣
→˓to LDAP servers within

the domain.
:param domain: An ADDomain object representing the domain that we're␣

→˓communicating with.
:param search_paging_size: Optional. The page size for paginated searches. If a␣

→˓search is expected to
be able to have more than this many results, a␣

→˓paginated search will be
performed. This is used as the page size in such␣

→˓searches. Changing this
affects the balance between the number of queries␣

→˓made and the size of
each query response in a large scale environment, and␣

→˓so it can be used
to optimize behavior based on network topology and␣

→˓traffic.
If not specified, defaults to 100.

:param trusted_domain_cache_lifetime_seconds: Optional. How long to maintain our␣
→˓trusted domain cache in

seconds. The cache of trusted␣
→˓domain information exists because

trust relationships change␣
→˓infrequently, but will be used a lot

(continues on next page)

24 Chapter 2. Contents

ms_active_directory, Release 1.9.1

(continued from previous page)

in searches and such when␣
→˓automatic traversal of trusts is

supported. Can be set to 0 to␣
→˓disable the cache.

If not specified, defaults to 24␣
→˓hours.

Some attributes of the session can changed later. For example, paging size or domain cache lifetimes can be adjusted
in response to observed response sizes and network conditions.

set_domain_search_base(self, search_base: str)
Set the search base to use for 'find' queries within the domain made by this session.
This can be used to confine our search to a sub-container within the domain. This␣

→˓can improve
the performance of lookups, avoid permissioning issues, and remove issues around␣

→˓duplicate
records with the same common name.

set_search_paging_size(self, new_size: int)

set_trusted_domain_cache_lifetime_seconds(self, new_lifetime_in_seconds: int)

There are functions for finding domain resources, such as DNS servers, CA certificates, policies time, etc.

find_certificate_authorities_for_domain(self, pem_format: bool = True, controls:␣
→˓List[ldap3.protocol.rfc4511.Control] = None) -> Union[List[str], List[bytes]]

Attempt to discover the CAs within the domain and return info on their certificates.
If a session was first established using an IP address or blind trust TLS, but we␣

→˓want to bootstrap our
sessions to establish stronger trust, or write the CA certificates to a local␣

→˓truststore for other
non-LDAP applications to use (e.g. establishing roots of trust for https or syslog␣

→˓over TLS), then it's
helpful to grab the certificate authorities in the domain and their signing␣

→˓certificates.
Not all domains run certificate authorities; some use public CAs or get certs from␣

→˓other PKI being run,
so this isn't useful for everyone. But a lot of people do run CAs in their AD␣

→˓domains, and this is useful
for them.

:param pem_format: If True, return the certificates as strings in PEM format.␣
→˓Otherwise, return the

certificates as bytestrings in DER format. Defaults to True.
:param controls: A list of LDAP controls to use when performing the search. These␣

→˓can be used to specify
whether or not certain properties/attributes are critical, which␣

→˓influences whether a search
may succeed or fail based on their availability.

:returns: A list of either PEM-formatted certificate strings or DER-formatted␣
→˓certificate byte strings,

representing the CA certificates of the CAs within the domain.
(continues on next page)

2.1. The ms_active_directory project 25

ms_active_directory, Release 1.9.1

(continued from previous page)

find_current_time_for_domain(self) -> datetime.datetime
Get the current time for the domain as a datetime object.
Just calls the parent domain function and returns that. This is included here for␣

→˓completeness.
:returns: A datetime object representing the current time in the domain.

find_dns_servers_for_domain(self, controls: List[ldap3.protocol.rfc4511.Control] = None)␣
→˓-> Dict[str, str]

Attempt to discover the DNS servers within the domain and return info on them.
If a session was first established using an IP address or blind trust TLS, but we␣

→˓want to bootstrap our
sessions to use kerberos or TLS backed by CA certificates, we need proper DNS␣

→˓configured. For private
domains (e.g. in a datacenter), we may run DNS servers within the domain. This␣

→˓function discovers
computers with a "DNS/" service principal name, tries to look up IP addresses for␣

→˓them, and then
returns that information.
This won't always be useful, as DNS isn't always part of the AD domain, but it can␣

→˓help if we're bootstrapping
a computer with manufacturer configurations to use the AD domain for everything␣

→˓based on a minimal starting
configuration.

:param controls: A list of LDAP controls to use when performing the search. These␣
→˓can be used to specify

whether or not certain properties/attributes are critical, which␣
→˓influences whether a search

may succeed or fail based on their availability.
:returns: A dictionary mapping DNS hostnames of DNS servers to IP addresses. The␣

→˓hostnames are provided in case
a caller is configuring DNS-over-TLS. If no IP address can be resolved for␣

→˓a hostname, it will map to
a None value.
https://datatracker.ietf.org/doc/html/rfc8310

find_forest_schema_version(self) -> ms_active_directory.environment.constants.ADVersion
Attempt to determine the version of Windows Server set in the forest's schema.
:returns: An Enum of type ADVersion indicating the schema version.

find_functional_level_for_domain(self) -> ms_active_directory.environment.constants.
→˓ADFunctionalLevel

Attempt to discover the functional level of the domain and return it.
This will indicate if the domain is operating at the level of a 2008, 2012R2, 2016,␣

→˓etc. domain.
The functional level of a domain influences what functionality exists (e.g. 2003␣

→˓cannot issue AES keys,
2012 cannot use many TLS ciphers introduced with TLS1.3) and so it can be useful for␣

→˓determining what
to do.
:returns: An Enum of type ADFunctionalLevel indicating the functional level.

(continues on next page)

26 Chapter 2. Contents

ms_active_directory, Release 1.9.1

(continued from previous page)

find_netbios_name_for_domain(self, force_refresh: bool = False) -> str
Find the netbios name for this domain. Renaming a domain is a huge task and is␣

→˓incredibly rare,
so this information is cached when first read, and it only re-read if specifically␣

→˓requested.

:param force_refresh: If set to true, the domain will be searched for the␣
→˓information even if

it is already cached. Defaults to false.
:returns: A string indicating the netbios name of the domain.

find_policies_in_domain(self) -> List[ADGroupPolicy]:
Find all of the policy objects in this domain. The number of policies is often less␣

→˓than the
number of things affected by them, so querying all of them once and handling mapping␣

→˓locally is
more desirable than re-querying policies every time a container that bears policies␣

→˓is queried.

:returns: A list of ADGroupPolicy objects representing the policies in the domain.

find_supported_sasl_mechanisms_for_domain(self) -> List[str]
Attempt to discover the SASL mechanisms supported by the domain and return them.
This just builds upon the functionality that the domain has for this, as you don't␣

→˓need
to be authenticated as anything other than anonymous to read this information (since␣

→˓it's
often used to figure out how to authenticate).
This is included in the session object for completeness.
:returns: A list of strings indicating the supported SASL mechanisms for the domain.

ex: ['GSSAPI', 'GSS-SPNEGO', 'EXTERNAL']

is_domain_close_in_time_to_localhost(self, allowed_drift_seconds=None) -> bool
Get whether the domain time is close to the current local time.
Just calls the parent domain function and returns that. This is included here for␣

→˓completeness.
:param allowed_drift_seconds: The number of seconds considered "close", defaults to␣

→˓5 minutes.
5 minutes is the standard allowable drift for kerberos.

:returns: A boolean indicating whether we're within allowed_drift_seconds seconds of␣
→˓the domain time.

2.1. The ms_active_directory project 27

ms_active_directory, Release 1.9.1

Finding Users, Groups, Computers, and other objects

There are functions for finding users, groups, and computers by a variety of properties. These properties range from
unique distinguishers, like canonical name, SID, or sAMAccountName, to generic descriptors that can find multiple
records, like common name and searching for any records with a specific attribute value.

You can also look up attributes about the things you look up by specifying a list of LDAP attributes to query.

find_computer_by_distinguished_name(self, computer_dn: str, attributes_to_lookup:␣
→˓List[str] = None, controls: List[ldap3.protocol.rfc4511.Control] = None) -> Union[ms_
→˓active_directory.core.ad_objects.ADComputer, NoneType]

Find a Computer in AD based on a specified distinguished name and return it along␣
→˓with any

requested attributes.
:param computer_dn: The distinguished name of the computer.
:param attributes_to_lookup: A list of additional LDAP attributes to query for the␣

→˓computer. Regardless of
what's specified, the computer's name and object class␣

→˓attributes will be queried.
:param controls: A list of LDAP controls to use when performing the search. These␣

→˓can be used to specify
whether or not certain properties/attributes are critical, which␣

→˓influences whether a search
may succeed or fail based on their availability.

:returns: an ADComputer object or None if the computer does not exist.

find_computer_by_name(self, computer_name: str, attributes_to_lookup: List[str] = None,␣
→˓controls: List[ldap3.protocol.rfc4511.Control] = None) -> Union[ms_active_directory.
→˓core.ad_objects.ADComputer, NoneType]

Find a Computer in AD based on a provided name.
This function takes in a generic name which can be either a distinguished name, a␣

→˓common name, or a
sAMAccountName, and tries to find a unique computer identified by it and return␣

→˓information on the computer.
:param computer_name: The name of the computer, which may be a DN, common name, or␣

→˓sAMAccountName.
:param attributes_to_lookup: A list of additional LDAP attributes to query for the␣

→˓computer. Regardless of
what's specified, the computer's name and object class␣

→˓attributes will be queried.
:param controls: A list of LDAP controls to use when performing the search. These␣

→˓can be used to specify
whether or not certain properties/attributes are critical, which␣

→˓influences whether a search
may succeed or fail based on their availability.

:returns: an ADComputer object or None if the computer does not exist.
:raises: a DuplicateNameException if more than one entry exists with this name.

find_computer_by_sam_name(self, computer_name: str, attributes_to_lookup: List[str] =␣
→˓None, controls: List[ldap3.protocol.rfc4511.Control] = None) -> Union[ms_active_
→˓directory.core.ad_objects.ADComputer, NoneType]

Find a Computer in AD based on a specified sAMAccountName name and return it along␣
→˓with any

(continues on next page)

28 Chapter 2. Contents

ms_active_directory, Release 1.9.1

(continued from previous page)

requested attributes.
:param computer_name: The sAMAccountName name of the computer. Because a lot of␣

→˓people get a bit confused on
what a computer name, as many systems leave out the trailing $␣

→˓that's common to many
computer sAMAccountNames when showing it, if computer_name␣

→˓does not end in a trailing $
and no computer can be found with computer_name, a lookup will␣

→˓be attempted for the
computer_name with a trailing $ added.

:param attributes_to_lookup: A list of additional LDAP attributes to query for the␣
→˓computer. Regardless of

what's specified, the computer's name and object class␣
→˓attributes will be queried.

:param controls: A list of LDAP controls to use when performing the search. These␣
→˓can be used to specify

whether or not certain properties/attributes are critical, which␣
→˓influences whether a search

may succeed or fail based on their availability.
:returns: an ADComputer object or None if the computer does not exist.

find_computer_by_sid(self, computer_sid: Union[ms_active_directory.environment.security.
→˓security_config_constants.WellKnownSID, str, ms_active_directory.environment.security.
→˓security_descriptor_utils.ObjectSid], attributes_to_lookup: List[str] = None,␣
→˓controls: List[ldap3.protocol.rfc4511.Control] = None) -> Union[ms_active_directory.
→˓core.ad_objects.ADComputer, NoneType]

Find a Computer in AD given its SID.
This function takes in a computer's objectSID and then looks up the computer in AD␣

→˓using it. SIDs are unique
so only a single entry can be found at most.
The computer SID can be in many formats (well known SID enum, ObjectSID object,␣

→˓canonical SID format,
or bytes) and so all 4 possible formats are handled.
:param computer_sid: The computer SID. This may either be a well-known SID enum, an␣

→˓ObjectSID object, a string
SID in canonical format (e.g. S-1-1-0), object SID bytes, or␣

→˓the hex representation of
such bytes.

:param attributes_to_lookup: A list of additional LDAP attributes to query for the␣
→˓computer. Regardless of

what's specified, the computer's name and object class␣
→˓attributes will be queried.

:param controls: A list of LDAP controls to use when performing the search. These␣
→˓can be used to specify

whether or not certain properties/attributes are critical, which␣
→˓influences whether a search

may succeed or fail based on their availability.
:returns: an ADComputer object or None if the computer does not exist.

find_computers_by_attribute(self, attribute_name: str, attribute_value, attributes_to_
→˓lookup: List[str] = None, size_limit: int = 0, controls: List[ldap3.protocol.rfc4511.
→˓Control] = None) -> List[ms_active_directory.core.ad_objects.ADComputer]

(continues on next page)

2.1. The ms_active_directory project 29

ms_active_directory, Release 1.9.1

(continued from previous page)

Find all computers that possess the specified attribute with the specified value,␣
→˓and return a list of

ADComputer objects.

:param attribute_name: The LDAP name of the attribute to be used in the search.
:param attribute_value: The value that returned computers should possess for the␣

→˓attribute.
:param attributes_to_lookup: A list of additional LDAP attributes to query for the␣

→˓computers. Regardless of
what's specified, the computers' name and object class␣

→˓attributes will be queried.
:param size_limit: An integer indicating a limit to place the number of results the␣

→˓search will return.
If not specified, defaults to 0, meaning unlimited.

:param controls: A list of LDAP controls to use when performing the search. These␣
→˓can be used to specify

whether or not certain properties/attributes are critical, which␣
→˓influences whether a search

may succeed or fail based on their availability.
:returns: a list of ADComputer objects representing computers with the specified␣

→˓value for the specified
attribute.

find_computers_by_common_name(self, computer_name: str, attributes_to_lookup: List[str]␣
→˓= None, controls: List[ldap3.protocol.rfc4511.Control] = None) -> List[ms_active_
→˓directory.core.ad_objects.ADComputer]

Find all computers with a given common name and return a list of ADComputer objects.
This is particularly useful when you have multiple computers with the same name in␣

→˓different OUs
as a result of a migration, and want to find them so you can combine them.

:param computer_name: The common name of the computer(s) to be looked up.
:param attributes_to_lookup: A list of additional LDAP attributes to query for the␣

→˓computers. Regardless of
what's specified, the computers' name and object class␣

→˓attributes will be queried.
:param controls: A list of LDAP controls to use when performing the search. These␣

→˓can be used to specify
whether or not certain properties/attributes are critical, which␣

→˓influences whether a search
may succeed or fail based on their availability.

:returns: a list of ADComputer objects representing computers with the specified␣
→˓common name.

find_group_by_distinguished_name(self, group_dn: str, attributes_to_lookup: List[str] =␣
→˓None, controls: List[ldap3.protocol.rfc4511.Control] = None) -> Union[ms_active_
→˓directory.core.ad_objects.ADGroup, NoneType]

Find a group in AD based on a specified distinguished name and return it along with␣
→˓any

requested attributes.
:param group_dn: The distinguished name of the group.

(continues on next page)

30 Chapter 2. Contents

ms_active_directory, Release 1.9.1

(continued from previous page)

:param attributes_to_lookup: A list of additional LDAP attributes to query for the␣
→˓group. Regardless of

what's specified, the group's name and object class␣
→˓attributes will be queried.

:param controls: A list of LDAP controls to use when performing the search. These␣
→˓can be used to specify

whether or not certain properties/attributes are critical, which␣
→˓influences whether a search

may succeed or fail based on their availability.
:returns: an ADGroup object or None if the group does not exist.

find_group_by_name(self, group_name: str, attributes_to_lookup: List[str] = None,␣
→˓controls: List[ldap3.protocol.rfc4511.Control] = None) -> Union[ms_active_directory.
→˓core.ad_objects.ADGroup, NoneType]

Find a Group in AD based on a provided name.
This function takes in a generic name which can be either a distinguished name, a␣

→˓common name, or a
sAMAccountName, and tries to find a unique group identified by it and return␣

→˓information on the group.
:param group_name: The name of the group, which may be a DN, common name, or␣

→˓sAMAccountName.
:param attributes_to_lookup: A list of additional LDAP attributes to query for the␣

→˓group. Regardless of
what's specified, the group's name and object class␣

→˓attributes will be queried.
:param controls: A list of LDAP controls to use when performing the search. These␣

→˓can be used to specify
whether or not certain properties/attributes are critical, which␣

→˓influences whether a search
may succeed or fail based on their availability.

:returns: an ADGroup object or None if the group does not exist.
:raises: a DuplicateNameException if more than one entry exists with this name.

find_group_by_sam_name(self, group_name: str, attributes_to_lookup: List[str] = None,␣
→˓controls: List[ldap3.protocol.rfc4511.Control] = None) -> Union[ms_active_directory.
→˓core.ad_objects.ADGroup, NoneType]

Find a Group in AD based on a specified sAMAccountName name and return it along with␣
→˓any

requested attributes.
:param group_name: The sAMAccountName name of the group.
:param attributes_to_lookup: A list of additional LDAP attributes to query for the␣

→˓group. Regardless of
what's specified, the group's name and object class␣

→˓attributes will be queried.
:param controls: A list of LDAP controls to use when performing the search. These␣

→˓can be used to specify
whether or not certain properties/attributes are critical, which␣

→˓influences whether a search
may succeed or fail based on their availability.

:returns: an ADGroup object or None if the group does not exist.

find_group_by_sid(self, group_sid: Union[ms_active_directory.environment.security.
→˓security_config_constants.WellKnownSID, str, ms_active_directory.environment.security.
→˓security_descriptor_utils.ObjectSid], attributes_to_lookup: List[str] = None,␣
→˓controls: List[ldap3.protocol.rfc4511.Control] = None) -> Union[ms_active_directory.
→˓core.ad_objects.ADGroup, NoneType]

(continues on next page)

2.1. The ms_active_directory project 31

ms_active_directory, Release 1.9.1

(continued from previous page)

Find a Group in AD given its SID.
This function takes in a group's objectSID and then looks up the group in AD using␣

→˓it. SIDs are unique
so only a single entry can be found at most.
The group SID can be in many formats (well known SID enum, ObjectSID object,␣

→˓canonical SID format,
or bytes) and so all 4 possible formats are handled.
:param group_sid: The group SID. This may either be a well-known SID enum, an␣

→˓ObjectSID object, a string SID
in canonical format (e.g. S-1-1-0), object SID bytes, or the hex␣

→˓representation of such bytes.
:param attributes_to_lookup: A list of additional LDAP attributes to query for the␣

→˓group. Regardless of
what's specified, the group's name and object class␣

→˓attributes will be queried.
:param controls: A list of LDAP controls to use when performing the search. These␣

→˓can be used to specify
whether or not certain properties/attributes are critical, which␣

→˓influences whether a search
may succeed or fail based on their availability.

:returns: an ADGroup object or None if the group does not exist.

find_groups_by_attribute(self, attribute_name: str, attribute_value, attributes_to_
→˓lookup: List[str] = None, size_limit: int = 0, controls: List[ldap3.protocol.rfc4511.
→˓Control] = None) -> List[ms_active_directory.core.ad_objects.ADGroup]

Find all groups that possess the specified attribute with the specified value, and␣
→˓return a list of ADGroup

objects.

:param attribute_name: The LDAP name of the attribute to be used in the search.
:param attribute_value: The value that returned groups should possess for the␣

→˓attribute.
:param attributes_to_lookup: A list of additional LDAP attributes to query for the␣

→˓group. Regardless of
what's specified, the groups' name and object class␣

→˓attributes will be queried.
:param size_limit: An integer indicating a limit to place the number of results the␣

→˓search will return.
If not specified, defaults to 0, meaning unlimited.

:param controls: A list of LDAP controls to use when performing the search. These␣
→˓can be used to specify

whether or not certain properties/attributes are critical, which␣
→˓influences whether a search

may succeed or fail based on their availability.
:returns: a list of ADGroup objects representing groups with the specified value for␣

→˓the specified attribute.

find_groups_by_common_name(self, group_name: str, attributes_to_lookup: List[str] = None,
→˓ controls: List[ldap3.protocol.rfc4511.Control] = None) -> List[ms_active_directory.
→˓core.ad_objects.ADGroup]

Find all groups with a given common name and return a list of ADGroup objects.
This is particularly useful when you have multiple groups with the same name in␣

→˓different OUs (continues on next page)

32 Chapter 2. Contents

ms_active_directory, Release 1.9.1

(continued from previous page)

as a result of a migration, and want to find them so you can combine them.

:param group_name: The common name of the group(s) to be looked up.
:param attributes_to_lookup: A list of additional LDAP attributes to query for the␣

→˓group. Regardless of
what's specified, the groups' name and object class␣

→˓attributes will be queried.
:param controls: A list of LDAP controls to use when performing the search. These␣

→˓can be used to specify
whether or not certain properties/attributes are critical, which␣

→˓influences whether a search
may succeed or fail based on their availability.

:returns: a list of ADGroup objects representing groups with the specified common␣
→˓name.

find_object_by_canonical_name(self, canonical_name: str, attributes_to_lookup: List[str]␣
→˓= None, controls: List[ldap3.protocol.rfc4511.Control] = None) -> Union[ms_active_
→˓directory.core.ad_objects.ADObject, ms_active_directory.core.ad_objects.ADUser, ms_
→˓active_directory.core.ad_objects.ADGroup, ms_active_directory.core.ad_objects.
→˓ADComputer, NoneType]

Find an object in the domain using a canonical name, also called a 'windows path␣
→˓style' name.

:param canonical_name: A windows path style name representing an object in the␣
→˓domain. This may be either a

fully canonical name (e.g. example.com/Users/Administrator)␣
→˓or a relative canonical

name (e.g. /Users/Administrator).
:param attributes_to_lookup: Attributes to look up about the object. Regardless of␣

→˓what's specified,
the object's name and object class attributes will be␣

→˓queried.
:param controls: A list of LDAP controls to use when performing the search. These␣

→˓can be used to specify
whether or not certain properties/attributes are critical, which␣

→˓influences whether a search
may succeed or fail based on their availability.

:returns: an ADObject object or None if the distinguished name does not exist. If␣
→˓the object can be cast to

a more specific subclass, like ADUser, then it will be.

find_object_by_distinguished_name(self, distinguished_name: str, attributes_to_lookup:␣
→˓List[str] = None, controls: List[ldap3.protocol.rfc4511.Control] = None) -> Union[ms_
→˓active_directory.core.ad_objects.ADObject, ms_active_directory.core.ad_objects.ADUser,␣
→˓ms_active_directory.core.ad_objects.ADGroup, ms_active_directory.core.ad_objects.
→˓ADComputer, NoneType]

Find an object in the domain using a relative distinguished name or full␣
→˓distinguished name.

:param distinguished_name: A relative or absolute distinguished name within the␣
→˓domain to look up.

:param attributes_to_lookup: Attributes to look up about the object. Regardless of␣
→˓what's specified, (continues on next page)

2.1. The ms_active_directory project 33

ms_active_directory, Release 1.9.1

(continued from previous page)

the object's name and object class attributes will be␣
→˓queried.

:param controls: A list of LDAP controls to use when performing the search. These␣
→˓can be used to specify

whether or not certain properties/attributes are critical, which␣
→˓influences whether a search

may succeed or fail based on their availability.
:returns: an ADObject object or None if the distinguished name does not exist. If␣

→˓the object can be cast to
a more specific subclass, like ADUser, then it will be.

find_object_by_sid(self, sid: Union[ms_active_directory.environment.security.security_
→˓config_constants.WellKnownSID, str, ms_active_directory.environment.security.security_
→˓descriptor_utils.ObjectSid], attributes_to_lookup: List[str] = None, object_class: str␣
→˓= None, return_type=None, controls: List[ldap3.protocol.rfc4511.Control] = None) ->␣
→˓Union[ms_active_directory.core.ad_objects.ADObject, ms_active_directory.core.ad_
→˓objects.ADUser, ms_active_directory.core.ad_objects.ADGroup, ms_active_directory.core.
→˓ad_objects.ADComputer, NoneType]

Find any object in AD given its SID.
This function takes in a user's objectSID and then looks up the user in AD using it.␣

→˓SIDs are unique
so only a single entry can be found at most.
The user SID can be in many formats (well known SID enum, ObjectSID object,␣

→˓canonical SID format,
or bytes) and so all 4 possible formats are handled.
:param sid: The object's SID. This may either be a well-known SID enum, an ObjectSID␣

→˓object, a string SID
in canonical format (e.g. S-1-1-0), object SID bytes, or the hex␣

→˓representation of such bytes.
:param attributes_to_lookup: A list of additional LDAP attributes to query for the␣

→˓object. Regardless of
what's specified, the object's name and object class␣

→˓attributes will be queried.
:param object_class: Optional. The object class to filter on when searching.␣

→˓Defaults to 'top' which will
include all objects in AD.

:param return_type: Optional. The class to use to represent the returned objects.␣
→˓Defaults to ADObject.

If a generic search is being done, or an object class is used␣
→˓that is not yet supported

by this library, using ADObject is recommended.
:param controls: A list of LDAP controls to use when performing the search. These␣

→˓can be used to specify
whether or not certain properties/attributes are critical, which␣

→˓influences whether a search
may succeed or fail based on their availability.

:returns: an ADObject object or None if the group does not exist.

find_objects_with_attribute(self, attribute_name: str, attribute_value, attributes_to_
→˓lookup: List[str] = None, size_limit: int = 0, object_class: str = None, return_
→˓type=None, controls: List[ldap3.protocol.rfc4511.Control] = None) -> List[Union[ms_
→˓active_directory.core.ad_objects.ADUser, ms_active_directory.core.ad_objects.
→˓ADComputer, ms_active_directory.core.ad_objects.ADObject, ms_active_directory.core.ad_
→˓objects.ADGroup]]

(continues on next page)

34 Chapter 2. Contents

ms_active_directory, Release 1.9.1

(continued from previous page)

Find all AD objects that possess the specified attribute with the specified value␣
→˓and return them.

:param attribute_name: The LDAP name of the attribute to be used in the search.
:param attribute_value: The value that returned objects should possess for the␣

→˓attribute.
:param attributes_to_lookup: A list of additional LDAP attributes to query for the␣

→˓group. Regardless of
what's specified, the groups' name and object class␣

→˓attributes will be queried.
:param size_limit: An integer indicating a limit to place the number of results the␣

→˓search will return.
If not specified, defaults to 0, meaning unlimited.

:param object_class: Optional. The object class to filter on when searching.␣
→˓Defaults to 'top' which will

include all objects in AD.
:param return_type: Optional. The class to use to represent the returned objects.␣

→˓Defaults to ADObject.
If a generic search is being done, or an object class is used␣

→˓that is not yet supported
by this library, using ADObject is recommended.

:param controls: A list of LDAP controls to use when performing the search. These␣
→˓can be used to specify

whether or not certain properties/attributes are critical, which␣
→˓influences whether a search

may succeed or fail based on their availability.
:returns: a list of ADObject objects representing groups with the specified value␣

→˓for the specified attribute.

find_user_by_distinguished_name(self, user_dn: str, attributes_to_lookup: List[str] =␣
→˓None, controls: List[ldap3.protocol.rfc4511.Control] = None) -> Union[ms_active_
→˓directory.core.ad_objects.ADUser, NoneType]

Find a User in AD based on a specified distinguished name and return it along with␣
→˓any

requested attributes.
:param user_dn: The distinguished name of the user.
:param attributes_to_lookup: A list of additional LDAP attributes to query for the␣

→˓user. Regardless of
what's specified, the user's name and object class␣

→˓attributes will be queried.
:param controls: A list of LDAP controls to use when performing the search. These␣

→˓can be used to specify
whether or not certain properties/attributes are critical, which␣

→˓influences whether a search
may succeed or fail based on their availability.

:returns: an ADUser object or None if the user does not exist.

find_user_by_name(self, user_name: str, attributes_to_lookup: List[str] = None,␣
→˓controls: List[ldap3.protocol.rfc4511.Control] = None) -> Union[ms_active_directory.
→˓core.ad_objects.ADUser, NoneType]

Find a User in AD based on a provided name.
This function takes in a generic name which can be either a distinguished name, a␣

→˓common name, or a (continues on next page)

2.1. The ms_active_directory project 35

ms_active_directory, Release 1.9.1

(continued from previous page)

sAMAccountName, and tries to find a unique user identified by it and return␣
→˓information on the user.

:param user_name: The name of the user, which may be a DN, common name, or␣
→˓sAMAccountName.

:param attributes_to_lookup: A list of additional LDAP attributes to query for the␣
→˓user. Regardless of

what's specified, the user's name and object class␣
→˓attributes will be queried.

:param controls: A list of LDAP controls to use when performing the search. These␣
→˓can be used to specify

whether or not certain properties/attributes are critical, which␣
→˓influences whether a search

may succeed or fail based on their availability.
:returns: an ADUser object or None if the user does not exist.
:raises: a DuplicateNameException if more than one entry exists with this name.

find_user_by_sam_name(self, user_name: str, attributes_to_lookup: List[str] = None,␣
→˓controls: List[ldap3.protocol.rfc4511.Control] = None) -> Union[ms_active_directory.
→˓core.ad_objects.ADUser, NoneType]

Find a User in AD based on a specified sAMAccountName name and return it along with␣
→˓any

requested attributes.
:param user_name: The sAMAccountName name of the user.
:param attributes_to_lookup: A list of additional LDAP attributes to query for the␣

→˓user. Regardless of
what's specified, the user's name and object class␣

→˓attributes will be queried.
:param controls: A list of LDAP controls to use when performing the search. These␣

→˓can be used to specify
whether or not certain properties/attributes are critical, which␣

→˓influences whether a search
may succeed or fail based on their availability.

:returns: an ADUser object or None if the user does not exist.

find_user_by_sid(self, user_sid: Union[ms_active_directory.environment.security.security_
→˓config_constants.WellKnownSID, str, ms_active_directory.environment.security.security_
→˓descriptor_utils.ObjectSid], attributes_to_lookup: List[str] = None, controls:␣
→˓List[ldap3.protocol.rfc4511.Control] = None) -> Union[ms_active_directory.core.ad_
→˓objects.ADUser, NoneType]

Find a User in AD given its SID.
This function takes in a user's objectSID and then looks up the user in AD using it.␣

→˓SIDs are unique
so only a single entry can be found at most.
The user SID can be in many formats (well known SID enum, ObjectSID object,␣

→˓canonical SID format,
or bytes) and so all 4 possible formats are handled.
:param user_sid: The user SID. This may either be a well-known SID enum, an␣

→˓ObjectSID object, a string SID
in canonical format (e.g. S-1-1-0), object SID bytes, or the hex␣

→˓representation of such bytes.
:param attributes_to_lookup: A list of additional LDAP attributes to query for the␣

→˓user. Regardless of

(continues on next page)

36 Chapter 2. Contents

ms_active_directory, Release 1.9.1

(continued from previous page)

what's specified, the user's name and object class␣
→˓attributes will be queried.

:param controls: A list of LDAP controls to use when performing the search. These␣
→˓can be used to specify

whether or not certain properties/attributes are critical, which␣
→˓influences whether a search

may succeed or fail based on their availability.
:returns: an ADUser object or None if the user does not exist.

find_users_by_attribute(self, attribute_name: str, attribute_value, attributes_to_
→˓lookup: List[str] = None, size_limit: int = 0, controls: List[ldap3.protocol.rfc4511.
→˓Control] = None) -> List[ms_active_directory.core.ad_objects.ADUser]

Find all users that possess the specified attribute with the specified value, and␣
→˓return a list of ADUser

objects.

:param attribute_name: The LDAP name of the attribute to be used in the search.
:param attribute_value: The value that returned groups should possess for the␣

→˓attribute.
:param attributes_to_lookup: A list of additional LDAP attributes to query for the␣

→˓users. Regardless of
what's specified, the users' name and object class␣

→˓attributes will be queried.
:param size_limit: An integer indicating a limit to place the number of results the␣

→˓search will return.
If not specified, defaults to 0, meaning unlimited.

:param controls: A list of LDAP controls to use when performing the search. These␣
→˓can be used to specify

whether or not certain properties/attributes are critical, which␣
→˓influences whether a search

may succeed or fail based on their availability.
:returns: a list of ADUser objects representing users with the specified value for␣

→˓the specified attribute.

find_users_by_common_name(self, user_name: str, attributes_to_lookup: List[str] = None,␣
→˓controls: List[ldap3.protocol.rfc4511.Control] = None) -> List[ms_active_directory.
→˓core.ad_objects.ADUser]

Find all users with a given common name and return a list of ADUser objects.
This is particularly useful when you have multiple users with the same name in␣

→˓different OUs
as a result of a migration, and want to find them so you can combine them.

:param user_name: The common name of the user(s) to be looked up.
:param attributes_to_lookup: A list of additional LDAP attributes to query for the␣

→˓users. Regardless of
what's specified, the users' name and object class␣

→˓attributes will be queried.
:param controls: A list of LDAP controls to use when performing the search. These␣

→˓can be used to specify
whether or not certain properties/attributes are critical, which␣

→˓influences whether a search
may succeed or fail based on their availability.

(continues on next page)

2.1. The ms_active_directory project 37

ms_active_directory, Release 1.9.1

(continued from previous page)

:returns: a list of ADUser objects representing users with the specified common name.

Finding and Managing Group Members and Memberships

There exist functions for finding the groups for a group, user, or computer, as well as finding the members of a group.
There’s also functions for managing those memberships, by adding or removing members idempotently.

When looking up members or groups, you can also look up attributes of those groups or members at the same time.
The library does its best to optimize these lookups.

Finding memberships and members:

find_groups_for_computer(self, computer: Union[str, ms_active_directory.core.ad_objects.
→˓ADComputer], attributes_to_lookup: List[str] = None, controls: List[ldap3.protocol.
→˓rfc4511.Control] = None, skip_validation: bool = False) -> List[ms_active_directory.
→˓core.ad_objects.ADGroup]

Find the groups that a computer belongs to, look up attributes of theirs, and return␣
→˓information about them.

:param computer: The computer to lookup group memberships for. This can either be an␣
→˓ADComputer or a string

name of an AD computer. If it is a string, the computer will be␣
→˓looked up first to get unique

distinguished name information about it unless it is a distinguished␣
→˓name.

:param attributes_to_lookup: A list of string LDAP attributes to look up in addition␣
→˓to our basic attributes.

:param controls: A list of LDAP controls to use when performing the search. These␣
→˓can be used to specify

whether or not certain properties/attributes are critical, which␣
→˓influences whether a search

may succeed or fail based on their availability.
:param skip_validation: If true, assume all distinguished names exist and do not␣

→˓look them up.
Defaults to False. This can be used to make this function␣

→˓more performant when
the caller knows all the distinguished names being specified␣

→˓are valid, as it
performs far fewer queries.

:returns: A list of ADGroup objects representing the groups that this user belongs␣
→˓to.

:raises: a DuplicateNameException if a computer name is specified and more than one␣
→˓entry exists with the name.

:raises: a InvalidLdapParameterException if the computer name is not a string or␣
→˓ADComputer.

find_groups_for_computers(self, computers: List[Union[str, ms_active_directory.core.ad_
→˓objects.ADComputer]], attributes_to_lookup: List[str] = None, controls: List[ldap3.
→˓protocol.rfc4511.Control] = None, skip_validation: bool = False) -> Dict[Union[str, ms_
→˓active_directory.core.ad_objects.ADComputer], List[ms_active_directory.core.ad_objects.
→˓ADGroup]]

Find the groups that a list of computers belong to, look up attributes of theirs,␣
→˓and return information (continues on next page)

38 Chapter 2. Contents

ms_active_directory, Release 1.9.1

(continued from previous page)

about them.

:param computers: The computers to lookup group memberships for. This can be a list␣
→˓of either ADComputer objects

or string names of AD computers. If they are strings, the␣
→˓computers will be looked up first

to get unique distinguished name information about them unless␣
→˓they are distinguished names.

:param attributes_to_lookup: A list of string LDAP attributes to look up in addition␣
→˓to our basic attributes.

:param controls: A list of LDAP controls to use when performing the search. These␣
→˓can be used to specify

whether or not certain properties/attributes are critical, which␣
→˓influences whether a search

may succeed or fail based on their availability.
:param skip_validation: If true, assume all distinguished names exist and do not␣

→˓look them up.
Defaults to False. This can be used to make this function␣

→˓more performant when
the caller knows all the distinguished names being specified␣

→˓are valid, as it
performs far fewer queries.

:returns: A dictionary mapping computers to lists of ADGroup objects representing␣
→˓the groups that they belong to

:raises: a DuplicateNameException if a computer name is specified and more than one␣
→˓entry exists with the name.

:raises: a InvalidLdapParameterException if any computers are not a string or␣
→˓ADComputer.

find_groups_for_entities(self, entities: List[Union[str, ms_active_directory.core.ad_
→˓objects.ADObject]], attributes_to_lookup: List[str] = None, lookup_by_name_fn: <built-
→˓in function callable> = None, controls: List[ldap3.protocol.rfc4511.Control] = None,␣
→˓skip_validation: bool = False) -> Dict[Union[str, ms_active_directory.core.ad_objects.
→˓ADObject], List[ms_active_directory.core.ad_objects.ADGroup]]

Find the parent groups for all of the entities in a List.
These entities may be users, groups, or anything really because Active Directory␣

→˓uses the "groupOfNames" style
membership tracking, so all group members are just represented as distinguished␣

→˓names regardless of type.
If the elements of entities are strings and are not distinguished names, then lookup_

→˓by_name_fn will be used
to look up the appropriate ADObject for the entity and get its distinguished name.

The parent groups of all the entities will then be queried, and the attributes␣
→˓specified will be looked up

(if any). A dictionary mapping the original entities to lists of ADGroup objects␣
→˓will be returned.

:param entities: A list of either ADObject objects or strings. These represent the␣
→˓objects whose parent groups

are being queried.
:param attributes_to_lookup: A list of LDAP attributes to query about the parent␣

→˓groups, in addition to the (continues on next page)

2.1. The ms_active_directory project 39

ms_active_directory, Release 1.9.1

(continued from previous page)

default ones queries. Optional.
:param lookup_by_name_fn: An optional function to call to map entities to ADObjects␣

→˓when the members of entities
are strings that are not LDAP distinguished names.

:param controls: A list of LDAP controls to use when performing the search. These␣
→˓can be used to specify

whether or not certain properties/attributes are critical, which␣
→˓influences whether a search

may succeed or fail based on their availability.
:param skip_validation: If true, assume all distinguished names exist and do not␣

→˓look them up.
Defaults to False. This can be used to make this function␣

→˓more performant when
the caller knows all the distinguished names being specified␣

→˓are valid, as it
performs far fewer queries.

:returns: A dictionary mapping input entities to lists of ADGroup object␣
→˓representing their parent groups.

:raises: a DuplicateNameException if an entity name is specified and more than one␣
→˓entry exists with the name.

:raises: InvalidLdapParameterException if any non-string non-ADObject types are␣
→˓found in entities, or if any

non-distinguished name strings are specified.

find_groups_for_group(self, group: Union[str, ms_active_directory.core.ad_objects.
→˓ADGroup], attributes_to_lookup: List[str] = None, controls: List[ldap3.protocol.
→˓rfc4511.Control] = None, skip_validation: bool = False) -> List[ms_active_directory.
→˓core.ad_objects.ADGroup]

Find the groups that a group belongs to, look up attributes of theirs, and return␣
→˓information about them.

:param group: The group to lookup group memberships for. This can either be an␣
→˓ADGroup or a string name of an

AD group. If it is a string, the group will be looked up first to get␣
→˓unique distinguished name

information about it unless it is a distinguished name.
:param attributes_to_lookup: A list of string LDAP attributes to look up in addition␣

→˓to our basic attributes.
:param controls: A list of LDAP controls to use when performing the search. These␣

→˓can be used to specify
whether or not certain properties/attributes are critical, which␣

→˓influences whether a search
may succeed or fail based on their availability.

:param skip_validation: If true, assume all distinguished names exist and do not␣
→˓look them up.

Defaults to False. This can be used to make this function␣
→˓more performant when

the caller knows all the distinguished names being specified␣
→˓are valid, as it

performs far fewer queries.
:returns: A list of ADGroup objects representing the groups that this group belongs␣

→˓to.

(continues on next page)

40 Chapter 2. Contents

ms_active_directory, Release 1.9.1

(continued from previous page)

:raises: a DuplicateNameException if a group name is specified and more than one␣
→˓entry exists with the name.

:raises: a InvalidLdapParameterException if the group name is not a string or␣
→˓ADGroup.

find_groups_for_groups(self, groups: List[Union[str, ms_active_directory.core.ad_objects.
→˓ADGroup]], attributes_to_lookup: List[str] = None, controls: List[ldap3.protocol.
→˓rfc4511.Control] = None, skip_validation: bool = False) -> Dict[Union[str, ms_active_
→˓directory.core.ad_objects.ADGroup], List[ms_active_directory.core.ad_objects.ADGroup]]

Find the groups that a list of groups belong to, look up attributes of theirs, and␣
→˓return information about

them.

:param groups: The groups to lookup group memberships for. This can be a list of␣
→˓either ADGroup objects or

string names of AD groups. If they are strings, the groups will be␣
→˓looked up first to get unique

distinguished name information about them unless they are␣
→˓distinguished names.

:param attributes_to_lookup: A list of string LDAP attributes to look up in addition␣
→˓to our basic attributes.

:param controls: A list of LDAP controls to use when performing the search. These␣
→˓can be used to specify

whether or not certain properties/attributes are critical, which␣
→˓influences whether a search

may succeed or fail based on their availability.
:param skip_validation: If true, assume all distinguished names exist and do not␣

→˓look them up.
Defaults to False. This can be used to make this function␣

→˓more performant when
the caller knows all the distinguished names being specified␣

→˓are valid, as it
performs far fewer queries.

:returns: A dictionary mapping groups to lists of ADGroup objects representing the␣
→˓groups that they belong to.

:raises: a DuplicateNameException if a group name is specified and more than one␣
→˓entry exists with the name.

:raises: a InvalidLdapParameterException if any groups are not a string or ADGroup.

find_groups_for_user(self, user: Union[str, ms_active_directory.core.ad_objects.ADUser],␣
→˓attributes_to_lookup: List[str] = None, controls: List[ldap3.protocol.rfc4511.Control]␣
→˓= None, skip_validation: bool = False) -> List[ms_active_directory.core.ad_objects.
→˓ADGroup]

Find the groups that a user belongs to, look up attributes of theirs, and return␣
→˓information about them.

:param user: The user to lookup group memberships for. This can either be an ADUser␣
→˓or a string name of an

AD user. If it is a string, the user will be looked up first to get␣
→˓unique distinguished name

information about it unless it is a distinguished name.
:param attributes_to_lookup: A list of string LDAP attributes to look up in addition␣

→˓to our basic attributes. (continues on next page)

2.1. The ms_active_directory project 41

ms_active_directory, Release 1.9.1

(continued from previous page)

:param controls: A list of LDAP controls to use when performing the search. These␣
→˓can be used to specify

whether or not certain properties/attributes are critical, which␣
→˓influences whether a search

may succeed or fail based on their availability.
:param skip_validation: If true, assume all distinguished names exist and do not␣

→˓look them up.
Defaults to False. This can be used to make this function␣

→˓more performant when
the caller knows all the distinguished names being specified␣

→˓are valid, as it
performs far fewer queries.

:returns: A list of ADGroup objects representing the groups that this user belongs␣
→˓to.

:raises: a DuplicateNameException if a user name is specified and more than one␣
→˓entry exists with the name.

:raises: a InvalidLdapParameterException if the user name is not a string or ADUser.

find_groups_for_users(self, users: List[Union[str, ms_active_directory.core.ad_objects.
→˓ADUser]], attributes_to_lookup: List[str] = None, controls: List[ldap3.protocol.
→˓rfc4511.Control] = None, skip_validation: bool = False) -> Dict[Union[str, ms_active_
→˓directory.core.ad_objects.ADUser], List[ms_active_directory.core.ad_objects.ADGroup]]

Find the groups that a list of users belong to, look up attributes of theirs, and␣
→˓return information about

them.

:param users: The users to lookup group memberships for. This can be a list of␣
→˓either ADUser objects or

string names of AD users. If they are strings, the users will be␣
→˓looked up first to get unique

distinguished name information about them unless they are␣
→˓distinguished names.

:param attributes_to_lookup: A list of string LDAP attributes to look up in addition␣
→˓to our basic attributes.

:param controls: A list of LDAP controls to use when performing the search. These␣
→˓can be used to specify

whether or not certain properties/attributes are critical, which␣
→˓influences whether a search

may succeed or fail based on their availability.
:param skip_validation: If true, assume all distinguished names exist and do not␣

→˓look them up.
Defaults to False. This can be used to make this function␣

→˓more performant when
the caller knows all the distinguished names being specified␣

→˓are valid, as it
performs far fewer queries.

:returns: A dictionary mapping users to lists of ADGroup objects representing the␣
→˓groups that they belong to.

:raises: a DuplicateNameException if a user name is specified and more than one␣
→˓entry exists with the name.

:raises: a InvalidLdapParameterException if any users are not a string or ADUser.

(continues on next page)

42 Chapter 2. Contents

ms_active_directory, Release 1.9.1

(continued from previous page)

find_members_of_group(self, group: Union[str, ms_active_directory.core.ad_objects.
→˓ADGroup], attributes_to_lookup: List[str] = None, controls: List[ldap3.protocol.
→˓rfc4511.Control] = None, skip_validation: bool = False) -> List[Union[ms_active_
→˓directory.core.ad_objects.ADUser, ms_active_directory.core.ad_objects.ADComputer, ms_
→˓active_directory.core.ad_objects.ADObject, ms_active_directory.core.ad_objects.
→˓ADGroup]]

Find the members of a group in the domain, along with attributes of the members.

:param group: Either a string name of a group or ADGroup to look up the members of.
:param attributes_to_lookup: Attributes to look up about the members of each group.
:param controls: A list of LDAP controls to use when performing the search. These␣

→˓can be used to specify
whether or not certain properties/attributes are critical, which␣

→˓influences whether a search
may succeed or fail based on their availability.

:param skip_validation: If true, assume all members exist and do not raise an error␣
→˓if we fail to look one up.

Instead, a placeholder object will be used for members that␣
→˓could not be found.

Defaults to False.
:return: A list of objects representing the group's members.

The objects may be of type ADUser, ADComputer, ADGroup, etc. - this␣
→˓function attempts to cast all

member objects to the most accurate object type representing them. ADObject␣
→˓will be used for members

that do not match any of the more specific object types in the library
(e.g. foreign security principals).

:raises: InvalidLdapParameterException if the group is not a string or ADGroup
:raises: ObjectNotFoundException if the group cannot be found.
:raises: DomainSearchException if skip_validation is False and any group members␣

→˓cannot be found.

find_members_of_group_recursive(self, group: Union[str, ms_active_directory.core.ad_
→˓objects.ADGroup], attributes_to_lookup: List[str] = None, controls: List[ldap3.
→˓protocol.rfc4511.Control] = None, skip_validation: bool = False, maximum_nesting_
→˓depth: int = None, flatten: bool = False) -> List[Dict[Union[str, ms_active_directory.
→˓core.ad_objects.ADGroup], List[ms_active_directory.core.ad_objects.ADGroup]]]

Find the members of a group in the domain, along with attributes of the members.

:param group: Either a string name of a group or ADGroup to look up the members of.
:param attributes_to_lookup: Attributes to look up about the members of each group.
:param controls: A list of LDAP controls to use when performing the search. These␣

→˓can be used to specify
whether or not certain properties/attributes are critical, which␣

→˓influences whether a search
may succeed or fail based on their availability.

:param skip_validation: If true, assume all members exist and do not raise an error␣
→˓if we fail to look one up.

Instead, a placeholder object will be used for members that␣
→˓could not be found.

Defaults to False.
:param maximum_nesting_depth: A limit to the number of levels of nesting to recurse␣

→˓beyond the first lookup. (continues on next page)

2.1. The ms_active_directory project 43

ms_active_directory, Release 1.9.1

(continued from previous page)

A level of 0 makes this behave the same as find_
→˓members_of_groups and a level of

None means recurse until we've gone through all␣
→˓nesting. Defaults to None.

:param flatten: If set to True, a 1-item list of a single dictionary mapping the␣
→˓input group to a list of

all members found recursively will be returned. This discards␣
→˓information about whether

a member is a direct member or is a member via nesting, and what␣
→˓those relationships are.

As an example, instead of returning [{group1 -> [group2, user1]},
→˓{group2 -> [user2, user3]}],

we would return [{group1 -> [group2, user1, user2, user3]}]. This␣
→˓makes iterating members

simpler, but removes the ability to use information about the␣
→˓descendants of nested groups

as independent groups later on.
Defaults to False.

:return: A list of dictionaries mapping groups to objects representing the group's␣
→˓members.

The first dictionary maps the input group to its members; the second␣
→˓dictionary maps the groups that

were members of the groups in the first dictionary to their members, and so␣
→˓on and so forth.

The objects may be of type ADUser, ADComputer, ADGroup, etc. - this␣
→˓function attempts to cast all

member objects to the most accurate object type representing them. ADObject␣
→˓will be used for members

that do not match any of the more specific object types in the library
(e.g. foreign security principals).

:raises: InvalidLdapParameterException if the group is not a string or ADGroup
:raises: ObjectNotFoundException if the group cannot be found.
:raises: DomainSearchException if skip_validation is False and any group members␣

→˓cannot be found.

find_members_of_groups(self, groups: List[Union[str, ms_active_directory.core.ad_objects.
→˓ADGroup]], attributes_to_lookup: List[str] = None, controls: List[ldap3.protocol.
→˓rfc4511.Control] = None, skip_validation: bool = False) -> Dict[Union[str, ms_active_
→˓directory.core.ad_objects.ADGroup], List[Union[ms_active_directory.core.ad_objects.
→˓ADUser, ms_active_directory.core.ad_objects.ADComputer, ms_active_directory.core.ad_
→˓objects.ADObject, ms_active_directory.core.ad_objects.ADGroup]]]

Find the members of one or more groups in the domain, along with attributes of the␣
→˓members.

:param groups: A list of either strings or ADGroups to look up the members of.
:param attributes_to_lookup: Attributes to look up about the members of each group.
:param controls: A list of LDAP controls to use when performing the search. These␣

→˓can be used to specify
whether or not certain properties/attributes are critical, which␣

→˓influences whether a search
may succeed or fail based on their availability.

:param skip_validation: If true, assume all members exist and do not raise an error␣
→˓if we fail to look one up. (continues on next page)

44 Chapter 2. Contents

ms_active_directory, Release 1.9.1

(continued from previous page)

Instead, a placeholder object will be used for members that␣
→˓could not be found.

Defaults to False.
:return: A dictionary mapping groups from the input list to lists of objects␣

→˓representing their members.
The objects may be of type ADUser, ADComputer, ADGroup, etc. - this␣

→˓function attempts to cast all
member objects to the most accurate object type representing them. ADObject␣

→˓will be used for members
that do not match any of the more specific object types in the library
(e.g. foreign security principals).

:raises: InvalidLdapParameterException if any groups are not strings or ADGroups
:raises: ObjectNotFoundException if any groups cannot be found.
:raises: DomainSearchException if skip_validation is False and any group members␣

→˓cannot be found.

find_members_of_groups_recursive(self, groups: List[Union[str, ms_active_directory.core.
→˓ad_objects.ADGroup]], attributes_to_lookup: List[str] = None, controls: List[ldap3.
→˓protocol.rfc4511.Control] = None, skip_validation: bool = False, maximum_nesting_
→˓depth: int = None) -> List[Dict[Union[str, ms_active_directory.core.ad_objects.
→˓ADGroup], List[ms_active_directory.core.ad_objects.ADGroup]]]

Find the members of a group in the domain, along with attributes of the members.

:param groups: Either a string name of a group or ADGroup to look up the members of.
:param attributes_to_lookup: Attributes to look up about the members of each group.
:param controls: A list of LDAP controls to use when performing the search. These␣

→˓can be used to specify
whether or not certain properties/attributes are critical, which␣

→˓influences whether a search
may succeed or fail based on their availability.

:param skip_validation: If true, assume all members exist and do not raise an error␣
→˓if we fail to look one up.

Instead, a placeholder object will be used for members that␣
→˓could not be found.

Defaults to False.
:param maximum_nesting_depth: A limit to the number of levels of nesting to recurse␣

→˓beyond the first lookup.
A level of 0 makes this behave the same as find_

→˓members_of_groups and a level of
None means recurse until we've gone through all␣

→˓nesting. Defaults to None.
:return: A list of dictionaries mapping groups to objects representing the group's␣

→˓members.
The first dictionary maps the input groups to members; the second␣

→˓dictionary maps the groups that
were members of the groups in the first dictionary to their members, and so␣

→˓on and so forth.
The objects may be of type ADUser, ADComputer, ADGroup, etc. - this␣

→˓function attempts to cast all
member objects to the most accurate object type representing them. ADObject␣

→˓will be used for members
that do not match any of the more specific object types in the library

(continues on next page)

2.1. The ms_active_directory project 45

ms_active_directory, Release 1.9.1

(continued from previous page)

(e.g. foreign security principals).
:raises: InvalidLdapParameterException if the group is not a string or ADGroup
:raises: ObjectNotFoundException if the group cannot be found.
:raises: DomainSearchException if skip_validation is False and any group members␣

→˓cannot be found.

Adding things to groups:

add_computers_to_groups(self, computers_to_add: List[Union[str, ms_active_directory.core.
→˓ad_objects.ADComputer]], groups_to_add_them_to: List[Union[str, ms_active_directory.
→˓core.ad_objects.ADGroup]], stop_and_rollback_on_error: bool = True, controls:␣
→˓List[ldap3.protocol.rfc4511.Control] = None, skip_validation: bool = False) ->␣
→˓List[Union[str, ms_active_directory.core.ad_objects.ADGroup]]

Add one or more computers to one or more groups as members. This function attempts␣
→˓to be idempotent
and will not re-add computers that are already members.

:param computers_to_add: A list of computers to add to other groups. These may␣
→˓either be ADComputer objects or

string name identifiers for computers.
:param groups_to_add_them_to: A list of groups to add members to. These may either␣

→˓be ADGroup objects or string
name identifiers for groups.

:param stop_and_rollback_on_error: If true, failure to add any of the computers to␣
→˓any of the groups will

cause us to try and remove any computers that␣
→˓have been added from any of the

groups that we successfully added members to.
:param controls: A list of LDAP controls to use when performing the search. These␣

→˓can be used to specify
whether or not certain properties/attributes are critical, which␣

→˓influences whether a search
may succeed or fail based on their availability.

:param skip_validation: If true, assume all distinguished names exist and do not␣
→˓look them up.

Defaults to False. This can be used to make this function␣
→˓more performant when

the caller knows all the distinguished names being specified␣
→˓are valid, as it

performs far fewer queries.
:returns: A list of groups that successfully had members added. This will always be␣

→˓all the groups unless
stop_and_rollback_on_error is False.

:raises: MembershipModificationException if we fail to add groups to any other␣
→˓groups and rollback succeeds.

:raises: MembershipModificationRollbackException if we fail to add any groups to␣
→˓other groups, and then also

fail when removing the groups that had been added successfully, leaving us␣
→˓in a partially completed

state. This may occur if the session has permission to add members but not␣
→˓to remove members.

(continues on next page)

46 Chapter 2. Contents

ms_active_directory, Release 1.9.1

(continued from previous page)

add_groups_to_groups(self, groups_to_add: List[Union[str, ms_active_directory.core.ad_
→˓objects.ADGroup]], groups_to_add_them_to: List[Union[str, ms_active_directory.core.ad_
→˓objects.ADGroup]], stop_and_rollback_on_error: bool = True, controls: List[ldap3.
→˓protocol.rfc4511.Control] = None, skip_validation: bool = False) -> List[Union[str, ms_
→˓active_directory.core.ad_objects.ADGroup]]

Add one or more groups to one or more other groups as members. This function␣
→˓attempts to be idempotent
and will not re-add groups that are already members.

:param groups_to_add: A list of groups to add to other groups. These may either be␣
→˓ADGroup objects or string

name identifiers for groups.
:param groups_to_add_them_to: A list of groups to add members to. These may either␣

→˓be ADGroup objects or string
name identifiers for groups.

:param stop_and_rollback_on_error: If true, failure to add any of the groups to any␣
→˓of the other groups will

cause us to try and remove any groups that have␣
→˓been added from any of the

groups that we successfully added members to.
:param controls: A list of LDAP controls to use when performing the search. These␣

→˓can be used to specify
whether or not certain properties/attributes are critical, which␣

→˓influences whether a search
may succeed or fail based on their availability.

:param skip_validation: If true, assume all distinguished names exist and do not␣
→˓look them up.

Defaults to False. This can be used to make this function␣
→˓more performant when

the caller knows all the distinguished names being specified␣
→˓are valid, as it

performs far fewer queries.
:returns: A list of groups that successfully had members added. This will always be␣

→˓all the groups unless
stop_and_rollback_on_error is False.

:raises: MembershipModificationException if any groups being added also exist in the␣
→˓groups to add them to, or

if we fail to add groups to any other groups and rollback succeeds.
:raises: MembershipModificationRollbackException if we fail to add any groups to␣

→˓other groups, and then also
fail when removing the groups that had been added successfully, leaving us␣

→˓in a partially completed
state. This may occur if the session has permission to add members but not␣

→˓to remove members.
add_users_to_groups(self, users_to_add: List[Union[str, ms_active_directory.core.ad_
→˓objects.ADUser]], groups_to_add_them_to: List[Union[str, ms_active_directory.core.ad_
→˓objects.ADGroup]], stop_and_rollback_on_error: bool = True, controls: List[ldap3.
→˓protocol.rfc4511.Control] = None, skip_validation: bool = False) -> List[Union[str, ms_
→˓active_directory.core.ad_objects.ADGroup]]

Add one or more users to one or more groups as members. This function attempts to be␣
→˓idempotent
and will not re-add users that are already members.

(continues on next page)

2.1. The ms_active_directory project 47

ms_active_directory, Release 1.9.1

(continued from previous page)

:param users_to_add: A list of users to add to other groups. These may either be␣
→˓ADUser objects or string

name identifiers for users.
:param groups_to_add_them_to: A list of groups to add members to. These may either␣

→˓be ADGroup objects or string
name identifiers for groups.

:param stop_and_rollback_on_error: If true, failure to add any of the users to any␣
→˓of the groups will

cause us to try and remove any users that have␣
→˓been added from any of the

groups that we successfully added members to.
:param controls: A list of LDAP controls to use when performing the search. These␣

→˓can be used to specify
whether or not certain properties/attributes are critical, which␣

→˓influences whether a search
may succeed or fail based on their availability.

:param skip_validation: If true, assume all distinguished names exist and do not␣
→˓look them up.

Defaults to False. This can be used to make this function␣
→˓more performant when

the caller knows all the distinguished names being specified␣
→˓are valid, as it

performs far fewer queries.
:returns: A list of groups that successfully had members added. This will always be␣

→˓all the groups unless
stop_and_rollback_on_error is False.

:raises: MembershipModificationException if we fail to add groups to any other␣
→˓groups and rollback succeeds.

:raises: MembershipModificationRollbackException if we fail to add any groups to␣
→˓other groups, and then also

fail when removing the groups that had been added successfully, leaving us␣
→˓in a partially completed

state. This may occur if the session has permission to add members but not␣
→˓to remove members.

Removing things from groups:

remove_computers_from_groups(self, computers_to_remove: List[Union[str, ms_active_
→˓directory.core.ad_objects.ADComputer]], groups_to_remove_them_from: List[Union[str, ms_
→˓active_directory.core.ad_objects.ADGroup]], stop_and_rollback_on_error: bool = True,␣
→˓controls: List[ldap3.protocol.rfc4511.Control] = None, skip_validation: bool = False) -
→˓> List[Union[str, ms_active_directory.core.ad_objects.ADGroup]]

Remove one or more computers from one or more groups as members. This function␣
→˓attempts to be idempotent
and will not remove computers that are not already members.

:param computers_to_remove: A list of computers to remove from groups. These may␣
→˓either be ADComputer objects or

string name identifiers for computers.
:param groups_to_remove_them_from: A list of groups to remove members from. These␣

→˓may either be ADGroup objects
(continues on next page)

48 Chapter 2. Contents

ms_active_directory, Release 1.9.1

(continued from previous page)

or string name identifiers for groups.
:param stop_and_rollback_on_error: If true, failure to remove any of the computers␣

→˓from any of the groups
will cause us to try and add any computers that␣

→˓have been removed back to any
of the groups that we successfully removed␣

→˓members from.
:param controls: A list of LDAP controls to use when performing the search. These␣

→˓can be used to specify
whether or not certain properties/attributes are critical, which␣

→˓influences whether a search
may succeed or fail based on their availability.

:param skip_validation: If true, assume all distinguished names exist and do not␣
→˓look them up.

Defaults to False. This can be used to make this function␣
→˓more performant when

the caller knows all the distinguished names being specified␣
→˓are valid, as it

performs far fewer queries.
:returns: A list of groups that successfully had members removed. This will always␣

→˓be all the groups unless
stop_and_rollback_on_error is False.

:raises: MembershipModificationException if we fail to remove computers from any␣
→˓groups and rollback succeeds

:raises: MembershipModificationRollbackException if we fail to remove any computers␣
→˓from groups, and then

also fail when adding the computers that had been removed successfully,␣
→˓leaving us in a partially

completed state. This may occur if the session has permission to remove␣
→˓members but not to add members.

remove_groups_from_groups(self, groups_to_remove: List[Union[str, ms_active_directory.
→˓core.ad_objects.ADGroup]], groups_to_remove_them_from: List[Union[str, ms_active_
→˓directory.core.ad_objects.ADGroup]], stop_and_rollback_on_error: bool = True,␣
→˓controls: List[ldap3.protocol.rfc4511.Control] = None, skip_validation: bool = False) -
→˓> List[Union[str, ms_active_directory.core.ad_objects.ADGroup]]

Remove one or more groups from one or more groups as members. This function attempts␣
→˓to be idempotent
and will not remove groups that are not already members.

:param groups_to_remove: A list of groups to remove from other groups. These may␣
→˓either be ADGroup objects or

string name identifiers for groups.
:param groups_to_remove_them_from: A list of groups to remove members from. These␣

→˓may either be ADGroup objects
or string name identifiers for groups.

:param stop_and_rollback_on_error: If true, failure to remove any of the groups from␣
→˓any of the other groups

will cause us to try and add any groups that have␣
→˓been removed back to any

of the groups that we successfully removed␣
→˓members from.

(continues on next page)

2.1. The ms_active_directory project 49

ms_active_directory, Release 1.9.1

(continued from previous page)

:param controls: A list of LDAP controls to use when performing the search. These␣
→˓can be used to specify

whether or not certain properties/attributes are critical, which␣
→˓influences whether a search

may succeed or fail based on their availability.
:param skip_validation: If true, assume all distinguished names exist and do not␣

→˓look them up.
Defaults to False. This can be used to make this function␣

→˓more performant when
the caller knows all the distinguished names being specified␣

→˓are valid, as it
performs far fewer queries.

:returns: A list of groups that successfully had members removed. This will always␣
→˓be all the groups unless

stop_and_rollback_on_error is False.
:raises: MembershipModificationException if we fail to remove groups from any other␣

→˓groups and rollback succeeds
:raises: MembershipModificationRollbackException if we fail to remove any groups␣

→˓from other groups, and then
also fail when adding the groups that had been removed successfully,␣

→˓leaving us in a partially
completed state. This may occur if the session has permission to remove␣

→˓members but not to add members.

remove_users_from_groups(self, users_to_remove: List[Union[str, ms_active_directory.core.
→˓ad_objects.ADUser]], groups_to_remove_them_from: List[Union[str, ms_active_directory.
→˓core.ad_objects.ADGroup]], stop_and_rollback_on_error: bool = True, controls:␣
→˓List[ldap3.protocol.rfc4511.Control] = None, skip_validation: bool = False) ->␣
→˓List[Union[str, ms_active_directory.core.ad_objects.ADGroup]]

Remove one or more users from one or more groups as members. This function attempts␣
→˓to be idempotent
and will not remove users that are not already members.

:param users_to_remove: A list of users to remove from groups. These may either be␣
→˓ADUsers objects or

string name identifiers for users.
:param groups_to_remove_them_from: A list of groups to remove members from. These␣

→˓may either be ADGroup objects
or string name identifiers for groups.

:param stop_and_rollback_on_error: If true, failure to remove any of the users from␣
→˓any of the groups

will cause us to try and add any users that have␣
→˓been removed back to any

of the groups that we successfully removed␣
→˓members from.

:param controls: A list of LDAP controls to use when performing the search. These␣
→˓can be used to specify

whether or not certain properties/attributes are critical, which␣
→˓influences whether a search

may succeed or fail based on their availability.
:param skip_validation: If true, assume all distinguished names exist and do not␣

→˓look them up.

(continues on next page)

50 Chapter 2. Contents

ms_active_directory, Release 1.9.1

(continued from previous page)

Defaults to False. This can be used to make this function␣
→˓more performant when

the caller knows all the distinguished names being specified␣
→˓are valid, as it

performs far fewer queries.
:returns: A list of groups that successfully had members removed. This will always␣

→˓be all the groups unless
stop_and_rollback_on_error is False.

:raises: MembershipModificationException if we fail to remove users from any groups␣
→˓and rollback succeeds

:raises: MembershipModificationRollbackException if we fail to remove any users from␣
→˓groups, and then

also fail when adding the users that had been removed successfully, leaving␣
→˓us in a partially

completed state. This may occur if the session has permission to remove␣
→˓members but not to add members.

Modifying Records Within the Domain

There exist a number of functions for modifying records. For users, groups, and computers there exist functions for
modifying their attributes, either by appending values to them or overwriting them. There’s also functions for modifying
the security descriptors of objects in order to change the permissions other principals have on them.

Appending values to user, computer, and group attributes atomically:

atomic_append_to_attribute_for_computer(self, computer: Union[str, ms_active_directory.
→˓core.ad_objects.ADComputer], attribute: str, value, controls: List[ldap3.protocol.
→˓rfc4511.Control] = None, raise_exception_on_failure: bool = True, skip_validation:␣
→˓bool = False) -> bool

Atomically append a value to an attribute for a computer in the domain.

:param computer: Either an ADComputer object or string name referencing the computer␣
→˓to be modified.

:param attribute: A string specifying the name of the LDAP attribute to be appended␣
→˓to.

:param value: The value to append to the attribute. Value may either be a primitive,␣
→˓such as a string, bytes,

or a number, if a single value will be appended. Value may also be an␣
→˓iterable such as a set or

a list if a multi-valued attribute will be appended to, in order to␣
→˓append multiple new values

to it at once.
:param controls: LDAP controls to use during the modification operation.
:param raise_exception_on_failure: If true, an exception will be raised with␣

→˓additional details if the modify
fails.

:param skip_validation: If true, assume all distinguished names exist and do not␣
→˓look them up.

Defaults to False. This can be used to make this function␣
→˓more performant when

the caller knows all the distinguished names being specified␣
→˓are valid, as it (continues on next page)

2.1. The ms_active_directory project 51

ms_active_directory, Release 1.9.1

(continued from previous page)

performs far fewer queries.
:returns: True if the operation succeeds, False otherwise.
:raises: InvalidLdapParameterException if any attributes or values are malformed.
:raises: ObjectNotFoundException if a distinguished name is specified and cannot be␣

→˓found
:raises: AttributeModificationException if raise_exception_on_failure is True and we␣

→˓fail
:raises: Other LDAP exceptions from the ldap3 library if the connection is␣

→˓configured to raise exceptions and
issues are seen such as determining that a value is malformed based on the␣

→˓server schema.

atomic_append_to_attribute_for_group(self, group: Union[str, ms_active_directory.core.ad_
→˓objects.ADGroup], attribute: str, value, controls: List[ldap3.protocol.rfc4511.
→˓Control] = None, raise_exception_on_failure: bool = True, skip_validation: bool =␣
→˓False) -> bool

Atomically append a value to an attribute for a group in the domain.

:param group: Either an ADGroup object or string name referencing the group to be␣
→˓modified.

:param attribute: A string specifying the name of the LDAP attribute to be appended␣
→˓to.

:param value: The value to append to the attribute. Value may either be a primitive,␣
→˓such as a string, bytes,

or a number, if a single value will be appended. Value may also be an␣
→˓iterable such as a set or

a list if a multi-valued attribute will be appended to, in order to␣
→˓append multiple new values

to it at once.
:param controls: LDAP controls to use during the modification operation.
:param raise_exception_on_failure: If true, an exception will be raised with␣

→˓additional details if the modify
fails.

:param skip_validation: If true, assume all distinguished names exist and do not␣
→˓look them up.

Defaults to False. This can be used to make this function␣
→˓more performant when

the caller knows all the distinguished names being specified␣
→˓are valid, as it

performs far fewer queries.
:returns: True if the operation succeeds, False otherwise.
:raises: InvalidLdapParameterException if any attributes or values are malformed.
:raises: ObjectNotFoundException if a distinguished name is specified and cannot be␣

→˓found
:raises: AttributeModificationException if raise_exception_on_failure is True and we␣

→˓fail
:raises: Other LDAP exceptions from the ldap3 library if the connection is␣

→˓configured to raise exceptions and
issues are seen such as determining that a value is malformed based on the␣

→˓server schema.

atomic_append_to_attribute_for_object(self, ad_object: Union[str, ms_active_directory.
→˓core.ad_objects.ADObject], attribute: str, value, controls: List[ldap3.protocol.
→˓rfc4511.Control] = None, raise_exception_on_failure: bool = True, skip_validation:␣
→˓bool = False) -> bool

(continues on next page)

52 Chapter 2. Contents

ms_active_directory, Release 1.9.1

(continued from previous page)

Atomically append a value to an attribute for an object in the domain.

:param ad_object: Either an ADObject object or string distinguished name referencing␣
→˓the object to be modified.

:param attribute: A string specifying the name of the LDAP attribute to be appended␣
→˓to.

:param value: The value to append to the attribute. Value may either be a primitive,␣
→˓such as a string, bytes,

or a number, if a single value will be appended. Value may also be an␣
→˓iterable such as a set or

a list if a multi-valued attribute will be appended to, in order to␣
→˓append multiple new values

to it at once.
:param controls: LDAP controls to use during the modification operation.
:param raise_exception_on_failure: If true, an exception will be raised with␣

→˓additional details if the modify
fails.

:param skip_validation: If true, assume all distinguished names exist and do not␣
→˓look them up.

Defaults to False. This can be used to make this function␣
→˓more performant when

the caller knows all the distinguished names being specified␣
→˓are valid, as it

performs far fewer queries.
:returns: True if the operation succeeds, False otherwise.
:raises: InvalidLdapParameterException if any attributes or values are malformed.
:raises: ObjectNotFoundException if a distinguished name is specified and cannot be␣

→˓found
:raises: AttributeModificationException if raise_exception_on_failure is True and we␣

→˓fail
:raises: Other LDAP exceptions from the ldap3 library if the connection is␣

→˓configured to raise exceptions and
issues are seen such as determining that a value is malformed based on the␣

→˓server schema.

atomic_append_to_attribute_for_user(self, user: Union[str, ms_active_directory.core.ad_
→˓objects.ADUser], attribute: str, value, controls: List[ldap3.protocol.rfc4511.Control]␣
→˓= None, raise_exception_on_failure: bool = True, skip_validation: bool = False) -> bool

Atomically append a value to an attribute for a user in the domain.

:param user: Either an ADUser object or string name referencing the user to be␣
→˓modified.

:param attribute: A string specifying the name of the LDAP attribute to be appended␣
→˓to.

:param value: The value to append to the attribute. Value may either be a primitive,␣
→˓such as a string, bytes,

or a number, if a single value will be appended. Value may also be an␣
→˓iterable such as a set or

a list if a multi-valued attribute will be appended to, in order to␣
→˓append multiple new values

to it at once.
:param controls: LDAP controls to use during the modification operation.

(continues on next page)

2.1. The ms_active_directory project 53

ms_active_directory, Release 1.9.1

(continued from previous page)

:param raise_exception_on_failure: If true, an exception will be raised with␣
→˓additional details if the modify

fails.
:param skip_validation: If true, assume all distinguished names exist and do not␣

→˓look them up.
Defaults to False. This can be used to make this function␣

→˓more performant when
the caller knows all the distinguished names being specified␣

→˓are valid, as it
performs far fewer queries.

:returns: True if the operation succeeds, False otherwise.
:raises: InvalidLdapParameterException if any attributes or values are malformed.
:raises: ObjectNotFoundException if a distinguished name is specified and cannot be␣

→˓found
:raises: AttributeModificationException if raise_exception_on_failure is True and we␣

→˓fail
:raises: Other LDAP exceptions from the ldap3 library if the connection is␣

→˓configured to raise exceptions and
issues are seen such as determining that a value is malformed based on the␣

→˓server schema.

atomic_append_to_attributes_for_computer(self, computer: Union[str, ms_active_directory.
→˓core.ad_objects.ADComputer], attribute_to_value_map: dict, controls: List[ldap3.
→˓protocol.rfc4511.Control] = None, raise_exception_on_failure: bool = True, skip_
→˓validation: bool = False) -> bool

Atomically append values to multiple attributes for a computer in the domain.

:param computer: Either an ADComputer object or string name referencing the computer␣
→˓to be modified.

:param attribute_to_value_map: A dictionary mapping string LDAP attribute names to␣
→˓values that will be used

in the modification operation. Values may either be␣
→˓primitives, such as strings,

bytes, and numbers if a single value will be appended.
→˓ Values may

also be iterables such as sets and lists if multiple␣
→˓values will be appended

to the attributes.
:param controls: LDAP controls to use during the modification operation.
:param raise_exception_on_failure: If true, an exception will be raised with␣

→˓additional details if the modify
fails.

:param skip_validation: If true, assume all distinguished names exist and do not␣
→˓look them up.

Defaults to False. This can be used to make this function␣
→˓more performant when

the caller knows all the distinguished names being specified␣
→˓are valid, as it

performs far fewer queries.
:returns: True if the operation succeeds, False otherwise.
:raises: InvalidLdapParameterException if any attributes or values are malformed.
:raises: ObjectNotFoundException if a distinguished name is specified and cannot be␣

→˓found (continues on next page)

54 Chapter 2. Contents

ms_active_directory, Release 1.9.1

(continued from previous page)

:raises: AttributeModificationException if raise_exception_on_failure is True and we␣
→˓fail

:raises: Other LDAP exceptions from the ldap3 library if the connection is␣
→˓configured to raise exceptions and

issues are seen such as determining that a value is malformed based on the␣
→˓server schema.

atomic_append_to_attributes_for_group(self, group: Union[str, ms_active_directory.core.
→˓ad_objects.ADGroup], attribute_to_value_map: dict, controls: List[ldap3.protocol.
→˓rfc4511.Control] = None, raise_exception_on_failure: bool = True, skip_validation:␣
→˓bool = False) -> bool

Atomically append values to multiple attributes for a group in the domain.

:param group: Either an ADGroup object or string name referencing the group to be␣
→˓modified.

:param attribute_to_value_map: A dictionary mapping string LDAP attribute names to␣
→˓values that will be used

in the modification operation. Values may either be␣
→˓primitives, such as strings,

bytes, and numbers if a single value will be appended.
→˓ Values may

also be iterables such as sets and lists if multiple␣
→˓values will be appended

to the attributes.
:param controls: LDAP controls to use during the modification operation.
:param raise_exception_on_failure: If true, an exception will be raised with␣

→˓additional details if the modify
fails.

:param skip_validation: If true, assume all distinguished names exist and do not␣
→˓look them up.

Defaults to False. This can be used to make this function␣
→˓more performant when

the caller knows all the distinguished names being specified␣
→˓are valid, as it

performs far fewer queries.
:returns: True if the operation succeeds, False otherwise.
:raises: InvalidLdapParameterException if any attributes or values are malformed.
:raises: ObjectNotFoundException if a distinguished name is specified and cannot be␣

→˓found
:raises: AttributeModificationException if raise_exception_on_failure is True and we␣

→˓fail
:raises: Other LDAP exceptions from the ldap3 library if the connection is␣

→˓configured to raise exceptions and
issues are seen such as determining that a value is malformed based on the␣

→˓server schema.

atomic_append_to_attributes_for_object(self, ad_object: Union[str, ms_active_directory.
→˓core.ad_objects.ADObject], attribute_to_value_map: dict, controls: List[ldap3.protocol.
→˓rfc4511.Control] = None, raise_exception_on_failure: bool = True, skip_validation:␣
→˓bool = False) -> bool

Atomically append values to multiple attributes for an object in the domain.

(continues on next page)

2.1. The ms_active_directory project 55

ms_active_directory, Release 1.9.1

(continued from previous page)

:param ad_object: Either an ADObject object or string distinguished name referencing␣
→˓the object to be modified.

:param attribute_to_value_map: A dictionary mapping string LDAP attribute names to␣
→˓values that will be used

in the modification operation. Values may either be␣
→˓primitives, such as strings,

bytes, and numbers if a single value will be appended.
→˓ Values may

also be iterables such as sets and lists if multiple␣
→˓values will be appended

to the attributes.
:param controls: LDAP controls to use during the modification operation.
:param raise_exception_on_failure: If true, an exception will be raised with␣

→˓additional details if the modify
fails.

:param skip_validation: If true, assume all distinguished names exist and do not␣
→˓look them up.

Defaults to False. This can be used to make this function␣
→˓more performant when

the caller knows all the distinguished names being specified␣
→˓are valid, as it

performs far fewer queries.
:returns: True if the operation succeeds, False otherwise.
:raises: InvalidLdapParameterException if any attributes or values are malformed.
:raises: ObjectNotFoundException if a distinguished name is specified and cannot be␣

→˓found
:raises: AttributeModificationException if raise_exception_on_failure is True and we␣

→˓fail
:raises: Other LDAP exceptions from the ldap3 library if the connection is␣

→˓configured to raise exceptions and
issues are seen such as determining that a value is malformed based on the␣

→˓server schema.

atomic_append_to_attributes_for_user(self, user: Union[str, ms_active_directory.core.ad_
→˓objects.ADUser], attribute_to_value_map: dict, controls: List[ldap3.protocol.rfc4511.
→˓Control] = None, raise_exception_on_failure: bool = True, skip_validation: bool =␣
→˓False) -> bool

Atomically append values to multiple attributes for a user in the domain.

:param user: Either an ADUser object or string name referencing the user to be␣
→˓modified.

:param attribute_to_value_map: A dictionary mapping string LDAP attribute names to␣
→˓values that will be used

in the modification operation. Values may either be␣
→˓primitives, such as strings,

bytes, and numbers if a single value will be appended.
→˓ Values may

also be iterables such as sets and lists if multiple␣
→˓values will be appended

to the attributes.
:param controls: LDAP controls to use during the modification operation.
:param raise_exception_on_failure: If true, an exception will be raised with␣

→˓additional details if the modify (continues on next page)

56 Chapter 2. Contents

ms_active_directory, Release 1.9.1

(continued from previous page)

fails.
:param skip_validation: If true, assume all distinguished names exist and do not␣

→˓look them up.
Defaults to False. This can be used to make this function␣

→˓more performant when
the caller knows all the distinguished names being specified␣

→˓are valid, as it
performs far fewer queries.

:returns: True if the operation succeeds, False otherwise.
:raises: InvalidLdapParameterException if any attributes or values are malformed.
:raises: ObjectNotFoundException if a distinguished name is specified and cannot be␣

→˓found
:raises: AttributeModificationException if raise_exception_on_failure is True and we␣

→˓fail
:raises: Other LDAP exceptions from the ldap3 library if the connection is␣

→˓configured to raise exceptions and
issues are seen such as determining that a value is malformed based on the␣

→˓server schema.

Overwriting values for user, group, and computer attributes:

overwrite_attribute_for_computer(self, computer: Union[str, ms_active_directory.core.
→˓ad_objects.ADComputer], attribute: str, value, controls: List[ldap3.protocol.rfc4511.
→˓Control] = None, raise_exception_on_failure: bool = True, skip_validation: bool =␣
→˓False) -> bool

Atomically overwrite the value of an attribute for a computer in the domain.

:param computer: Either an ADComputer object or string name referencing the computer␣
→˓to be modified.

:param attribute: A string specifying the name of the LDAP attribute to be␣
→˓overwritten.

:param value: The value to set for the attribute. Value may either be a primitive,␣
→˓such as a string, bytes,

or a number, if a single value will be set. Value may also be an␣
→˓iterable such as a set or

a list if a multi-valued attribute will be set.
:param controls: LDAP controls to use during the modification operation.
:param raise_exception_on_failure: If true, an exception will be raised with␣

→˓additional details if the modify
fails.

:param skip_validation: If true, assume all distinguished names exist and do not␣
→˓look them up.

Defaults to False. This can be used to make this function␣
→˓more performant when

the caller knows all the distinguished names being specified␣
→˓are valid, as it

performs far fewer queries.
:returns: True if the operation succeeds, False otherwise.
:raises: InvalidLdapParameterException if any attributes or values are malformed.
:raises: ObjectNotFoundException if a distinguished name is specified and cannot be␣

→˓found
:raises: AttributeModificationException if raise_exception_on_failure is True and we␣

→˓fail (continues on next page)

2.1. The ms_active_directory project 57

ms_active_directory, Release 1.9.1

(continued from previous page)

:raises: Other LDAP exceptions from the ldap3 library if the connection is␣
→˓configured to raise exceptions and

issues are seen such as determining that a value is malformed based on the␣
→˓server schema.

overwrite_attribute_for_group(self, group: Union[str, ms_active_directory.core.ad_
→˓objects.ADGroup], attribute: str, value, controls: List[ldap3.protocol.rfc4511.
→˓Control] = None, raise_exception_on_failure: bool = True, skip_validation: bool =␣
→˓False) -> bool

Atomically overwrite the value of an attribute for a group in the domain.

:param group: Either an ADUser object or string name referencing the group to be␣
→˓modified.

:param attribute: A string specifying the name of the LDAP attribute to be␣
→˓overwritten.

:param value: The value to set for the attribute. Value may either be a primitive,␣
→˓such as a string, bytes,

or a number, if a single value will be set. Value may also be an␣
→˓iterable such as a set or

a list if a multi-valued attribute will be set.
:param controls: LDAP controls to use during the modification operation.
:param raise_exception_on_failure: If true, an exception will be raised with␣

→˓additional details if the modify
fails.

:param skip_validation: If true, assume all distinguished names exist and do not␣
→˓look them up.

Defaults to False. This can be used to make this function␣
→˓more performant when

the caller knows all the distinguished names being specified␣
→˓are valid, as it

performs far fewer queries.
:returns: True if the operation succeeds, False otherwise.
:raises: InvalidLdapParameterException if any attributes or values are malformed.
:raises: ObjectNotFoundException if a distinguished name is specified and cannot be␣

→˓found
:raises: AttributeModificationException if raise_exception_on_failure is True and we␣

→˓fail
:raises: Other LDAP exceptions from the ldap3 library if the connection is␣

→˓configured to raise exceptions and
issues are seen such as determining that a value is malformed based on the␣

→˓server schema.

overwrite_attribute_for_object(self, ad_object: Union[str, ms_active_directory.core.ad_
→˓objects.ADObject], attribute: str, value, controls: List[ldap3.protocol.rfc4511.
→˓Control] = None, raise_exception_on_failure: bool = True, skip_validation: bool =␣
→˓False) -> bool

Atomically overwrite the value of an attribute for an object in the domain.

:param ad_object: Either an ADObject object or string distinguished name referencing␣
→˓the object to be modified.

:param attribute: A string specifying the name of the LDAP attribute to be␣
→˓overwritten.

(continues on next page)

58 Chapter 2. Contents

ms_active_directory, Release 1.9.1

(continued from previous page)

:param value: The value to set for the attribute. Value may either be a primitive,␣
→˓such as a string, bytes,

or a number, if a single value will be set. Value may also be an␣
→˓iterable such as a set or

a list if a multi-valued attribute will be set.
:param controls: LDAP controls to use during the modification operation.
:param raise_exception_on_failure: If true, an exception will be raised with␣

→˓additional details if the modify
fails.

:param skip_validation: If true, assume all distinguished names exist and do not␣
→˓look them up.

Defaults to False. This can be used to make this function␣
→˓more performant when

the caller knows all the distinguished names being specified␣
→˓are valid, as it

performs far fewer queries.
:returns: True if the operation succeeds, False otherwise.
:raises: InvalidLdapParameterException if any attributes or values are malformed.
:raises: ObjectNotFoundException if a distinguished name is specified and cannot be␣

→˓found
:raises: AttributeModificationException if raise_exception_on_failure is True and we␣

→˓fail
:raises: Other LDAP exceptions from the ldap3 library if the connection is␣

→˓configured to raise exceptions and
issues are seen such as determining that a value is malformed based on the␣

→˓server schema.

overwrite_attribute_for_user(self, user: Union[str, ms_active_directory.core.ad_objects.
→˓ADUser], attribute: str, value, controls: List[ldap3.protocol.rfc4511.Control] = None,␣
→˓raise_exception_on_failure: bool = True, skip_validation: bool = False) -> bool

Atomically overwrite the value of an attribute for a user in the domain.

:param user: Either an ADUser object or string name referencing the user to be␣
→˓modified.

:param attribute: A string specifying the name of the LDAP attribute to be␣
→˓overwritten.

:param value: The value to set for the attribute. Value may either be a primitive,␣
→˓such as a string, bytes,

or a number, if a single value will be set. Value may also be an␣
→˓iterable such as a set or

a list if a multi-valued attribute will be set.
:param controls: LDAP controls to use during the modification operation.
:param raise_exception_on_failure: If true, an exception will be raised with␣

→˓additional details if the modify
fails.

:param skip_validation: If true, assume all distinguished names exist and do not␣
→˓look them up.

Defaults to False. This can be used to make this function␣
→˓more performant when

the caller knows all the distinguished names being specified␣
→˓are valid, as it

performs far fewer queries.

(continues on next page)

2.1. The ms_active_directory project 59

ms_active_directory, Release 1.9.1

(continued from previous page)

:returns: True if the operation succeeds, False otherwise.
:raises: InvalidLdapParameterException if any attributes or values are malformed.
:raises: ObjectNotFoundException if a distinguished name is specified and cannot be␣

→˓found
:raises: AttributeModificationException if raise_exception_on_failure is True and we␣

→˓fail
:raises: Other LDAP exceptions from the ldap3 library if the connection is␣

→˓configured to raise exceptions and
issues are seen such as determining that a value is malformed based on the␣

→˓server schema.

overwrite_attributes_for_computer(self, computer: Union[str, ms_active_directory.core.ad_
→˓objects.ADComputer], attribute_to_value_map: dict, controls: List[ldap3.protocol.
→˓rfc4511.Control] = None, raise_exception_on_failure: bool = True, skip_validation:␣
→˓bool = False) -> bool

Atomically overwrite values of multiple attributes for a computer in the domain.

:param computer: Either an ADComputer object or string name referencing the computer␣
→˓to have attributes

overwritten.
:param attribute_to_value_map: A dictionary mapping string LDAP attribute names to␣

→˓values that will be used
in the modification operation. Values may either be␣

→˓primitives, such as strings,
bytes, and numbers if a single value will set. Values␣

→˓may also be iterables
such as sets and lists if an attribute is multi-

→˓valued and multiple values will
be set.

:param controls: LDAP controls to use during the modification operation.
:param raise_exception_on_failure: If true, an exception will be raised with␣

→˓additional details if the modify
fails.

:param skip_validation: If true, assume all distinguished names exist and do not␣
→˓look them up.

Defaults to False. This can be used to make this function␣
→˓more performant when

the caller knows all the distinguished names being specified␣
→˓are valid, as it

performs far fewer queries.
:returns: True if the operation succeeds, False otherwise.
:raises: InvalidLdapParameterException if any attributes or values are malformed.
:raises: ObjectNotFoundException if a name is specified and cannot be found
:raises: AttributeModificationException if raise_exception_on_failure is True and we␣

→˓fail
:raises: Other LDAP exceptions from the ldap3 library if the connection is␣

→˓configured to raise exceptions and
issues are seen such as determining that a value is malformed based on the␣

→˓server schema.

overwrite_attributes_for_group(self, group: Union[str, ms_active_directory.core.ad_
→˓objects.ADGroup], attribute_to_value_map: dict, controls: List[ldap3.protocol.rfc4511.
→˓Control] = None, raise_exception_on_failure: bool = True, skip_validation: bool =␣
→˓False) -> bool

(continues on next page)

60 Chapter 2. Contents

ms_active_directory, Release 1.9.1

(continued from previous page)

Atomically overwrite values of multiple attributes for a group in the domain.

:param group: Either an ADGroup object or string name referencing the group to have␣
→˓attributes overwritten.

:param attribute_to_value_map: A dictionary mapping string LDAP attribute names to␣
→˓values that will be used

in the modification operation. Values may either be␣
→˓primitives, such as strings,

bytes, and numbers if a single value will set. Values␣
→˓may also be iterables

such as sets and lists if an attribute is multi-
→˓valued and multiple values will

be set.
:param controls: LDAP controls to use during the modification operation.
:param raise_exception_on_failure: If true, an exception will be raised with␣

→˓additional details if the modify
fails.

:param skip_validation: If true, assume all distinguished names exist and do not␣
→˓look them up.

Defaults to False. This can be used to make this function␣
→˓more performant when

the caller knows all the distinguished names being specified␣
→˓are valid, as it

performs far fewer queries.
:returns: True if the operation succeeds, False otherwise.
:raises: InvalidLdapParameterException if any attributes or values are malformed.
:raises: ObjectNotFoundException if a name is specified and cannot be found
:raises: AttributeModificationException if raise_exception_on_failure is True and we␣

→˓fail
:raises: Other LDAP exceptions from the ldap3 library if the connection is␣

→˓configured to raise exceptions and
issues are seen such as determining that a value is malformed based on the␣

→˓server schema.

overwrite_attributes_for_object(self, ad_object: Union[str, ms_active_directory.core.ad_
→˓objects.ADObject], attribute_to_value_map: dict, controls: List[ldap3.protocol.rfc4511.
→˓Control] = None, raise_exception_on_failure: bool = True, skip_validation: bool =␣
→˓False) -> bool

Atomically overwrite values of multiple attributes for an object in the domain.

:param ad_object: Either an ADObject object or string distinguished name referencing␣
→˓the object to be modified.

:param attribute_to_value_map: A dictionary mapping string LDAP attribute names to␣
→˓values that will be used

in the modification operation. Values may either be␣
→˓primitives, such as strings,

bytes, and numbers if a single value will set. Values␣
→˓may also be iterables

such as sets and lists if an attribute is multi-
→˓valued and multiple values will

be set.
:param controls: LDAP controls to use during the modification operation.

(continues on next page)

2.1. The ms_active_directory project 61

ms_active_directory, Release 1.9.1

(continued from previous page)

:param raise_exception_on_failure: If true, an exception will be raised with␣
→˓additional details if the modify

fails.
:param skip_validation: If true, assume all distinguished names exist and do not␣

→˓look them up.
Defaults to False. This can be used to make this function␣

→˓more performant when
the caller knows all the distinguished names being specified␣

→˓are valid, as it
performs far fewer queries.

:returns: True if the operation succeeds, False otherwise.
:raises: InvalidLdapParameterException if any attributes or values are malformed.
:raises: ObjectNotFoundException if a distinguished name is specified and cannot be␣

→˓found
:raises: AttributeModificationException if raise_exception_on_failure is True and we␣

→˓fail
:raises: Other LDAP exceptions from the ldap3 library if the connection is␣

→˓configured to raise exceptions and
issues are seen such as determining that a value is malformed based on the␣

→˓server schema.

overwrite_attributes_for_user(self, user: Union[str, ms_active_directory.core.ad_objects.
→˓ADUser], attribute_to_value_map: dict, controls: List[ldap3.protocol.rfc4511.Control]␣
→˓= None, raise_exception_on_failure: bool = True, skip_validation: bool = False) -> bool

Atomically overwrite values of multiple attributes for a user in the domain.

:param user: Either an ADUser object or string name referencing the user to have␣
→˓attributes overwritten.

:param attribute_to_value_map: A dictionary mapping string LDAP attribute names to␣
→˓values that will be used

in the modification operation. Values may either be␣
→˓primitives, such as strings,

bytes, and numbers if a single value will set. Values␣
→˓may also be iterables

such as sets and lists if an attribute is multi-
→˓valued and multiple values will

be set.
:param controls: LDAP controls to use during the modification operation.
:param raise_exception_on_failure: If true, an exception will be raised with␣

→˓additional details if the modify
fails.

:param skip_validation: If true, assume all distinguished names exist and do not␣
→˓look them up.

Defaults to False. This can be used to make this function␣
→˓more performant when

the caller knows all the distinguished names being specified␣
→˓are valid, as it

performs far fewer queries.
:returns: True if the operation succeeds, False otherwise.
:raises: InvalidLdapParameterException if any attributes or values are malformed.
:raises: ObjectNotFoundException if a name is specified and cannot be found
:raises: AttributeModificationException if raise_exception_on_failure is True and we␣

→˓fail (continues on next page)

62 Chapter 2. Contents

ms_active_directory, Release 1.9.1

(continued from previous page)

:raises: Other LDAP exceptions from the ldap3 library if the connection is␣
→˓configured to raise exceptions and

issues are seen such as determining that a value is malformed based on the␣
→˓server schema.

Finding security descriptors:

find_security_descriptor_for_computer(self, computer: Union[str, ms_active_directory.
→˓core.ad_objects.ADComputer], include_sacl: bool = False, skip_validation: bool =␣
→˓False) -> ms_active_directory.environment.security.security_descriptor_utils.
→˓SelfRelativeSecurityDescriptor

Given a computer, find its security descriptor. The security descriptor will be␣
→˓returned as a

SelfRelativeSecurityDescriptor object.

:param computer: The computer for which we will read the security descriptor. This␣
→˓may be an ADComputer object

or a string name identifying the computer (in which case it will be␣
→˓looked up).

:param include_sacl: If true, we will attempt to read the System ACL for the user in␣
→˓addition to the

Discretionary ACL and owner information when reading the␣
→˓security descriptor. This is

more privileged than just getting the Discretionary ACL and␣
→˓owner information.

Defaults to False.
:param skip_validation: If true, assume all distinguished names exist and do not␣

→˓look them up.
Defaults to False. This can be used to make this function␣

→˓more performant when
the caller knows all the distinguished names being specified␣

→˓are valid, as it
performs far fewer queries.

:raises: ObjectNotFoundException if the computer cannot be found.
:raises: InvalidLdapParameterException if the computer specified is not a string or␣

→˓an ADComputer object
:raises: SecurityDescriptorDecodeException if we fail to decode the security␣

→˓descriptor.

find_security_descriptor_for_group(self, group: Union[str, ms_active_directory.core.ad_
→˓objects.ADGroup], include_sacl: bool = False, skip_validation: bool = False) -> ms_
→˓active_directory.environment.security.security_descriptor_utils.
→˓SelfRelativeSecurityDescriptor

Given a group, find its security descriptor. The security descriptor will be␣
→˓returned as a

SelfRelativeSecurityDescriptor object.

:param group: The group for which we will read the security descriptor. This may be␣
→˓an ADGroup object or a

string name identifying the group (in which case it will be looked up).
:param include_sacl: If true, we will attempt to read the System ACL for the group␣

→˓in addition to the
(continues on next page)

2.1. The ms_active_directory project 63

ms_active_directory, Release 1.9.1

(continued from previous page)

Discretionary ACL and owner information when reading the␣
→˓security descriptor. This is

more privileged than just getting the Discretionary ACL and␣
→˓owner information.

Defaults to False.
:param skip_validation: If true, assume all distinguished names exist and do not␣

→˓look them up.
Defaults to False. This can be used to make this function␣

→˓more performant when
the caller knows all the distinguished names being specified␣

→˓are valid, as it
performs far fewer queries.

:raises: ObjectNotFoundException if the group cannot be found.
:raises: InvalidLdapParameterException if the group specified is not a string or an␣

→˓ADGroup object
:raises: SecurityDescriptorDecodeException if we fail to decode the security␣

→˓descriptor.

find_security_descriptor_for_object(self, ad_object: Union[str, ms_active_directory.core.
→˓ad_objects.ADObject], include_sacl: bool = False, skip_validation: bool = False) -> ms_
→˓active_directory.environment.security.security_descriptor_utils.
→˓SelfRelativeSecurityDescriptor

Given an object, find its security descriptor. The security descriptor will be␣
→˓returned as a

SelfRelativeSecurityDescriptor object.

:param ad_object: The object for which we will read the security descriptor. This␣
→˓may be an ADObject object or a

string distinguished identifying the object.
:param include_sacl: If true, we will attempt to read the System ACL for the object␣

→˓in addition to the
Discretionary ACL and owner information when reading the␣

→˓security descriptor. This is
more privileged than just getting the Discretionary ACL and␣

→˓owner information.
Defaults to False.

:param skip_validation: If true, assume all distinguished names exist and do not␣
→˓look them up.

Defaults to False. This can be used to make this function␣
→˓more performant when

the caller knows all the distinguished names being specified␣
→˓are valid, as it

performs far fewer queries.
:raises: ObjectNotFoundException if the object cannot be found.
:raises: InvalidLdapParameterException if the ad_object specified is not a string DN␣

→˓or an ADObject object
:raises: SecurityDescriptorDecodeException if we fail to decode the security␣

→˓descriptor.

find_security_descriptor_for_user(self, user: Union[str, ms_active_directory.core.ad_
→˓objects.ADUser], include_sacl: bool = False, skip_validation: bool = False) -> ms_
→˓active_directory.environment.security.security_descriptor_utils.
→˓SelfRelativeSecurityDescriptor (continues on next page)

64 Chapter 2. Contents

ms_active_directory, Release 1.9.1

(continued from previous page)

Given a user, find its security descriptor. The security descriptor will be returned␣
→˓as a

SelfRelativeSecurityDescriptor object.

:param user: The user for which we will read the security descriptor. This may be an␣
→˓ADUser object or a

string name identifying the user (in which case it will be looked up).
:param include_sacl: If true, we will attempt to read the System ACL for the user in␣

→˓addition to the
Discretionary ACL and owner information when reading the␣

→˓security descriptor. This is
more privileged than just getting the Discretionary ACL and␣

→˓owner information.
Defaults to False.

:param skip_validation: If true, assume all distinguished names exist and do not␣
→˓look them up.

Defaults to False. This can be used to make this function␣
→˓more performant when

the caller knows all the distinguished names being specified␣
→˓are valid, as it

performs far fewer queries.
:raises: ObjectNotFoundException if the user cannot be found.
:raises: InvalidLdapParameterException if the user specified is not a string or an␣

→˓ADUser object
:raises: SecurityDescriptorDecodeException if we fail to decode the security␣

→˓descriptor.

Overwriting security descriptors:

set_computer_security_descriptor(self, computer: Union[str, ms_active_directory.core.ad_
→˓objects.ADComputer], new_sec_descriptor: ms_active_directory.environment.security.
→˓security_descriptor_utils.SelfRelativeSecurityDescriptor, raise_exception_on_failure:␣
→˓bool = True, skip_validation: bool = False) -> bool

Set the security descriptor on an Active Directory computer. This can be used to␣
→˓change the owner of a

computer in AD, change its permission ACEs, etc.

:param computer: Either an ADComputer object or string name referencing the computer␣
→˓to be modified.

:param new_sec_descriptor: The security descriptor to set on the object.
:param raise_exception_on_failure: If true, raise an exception when modifying the␣

→˓object fails instead of
returning False.

:param skip_validation: If true, assume all distinguished names exist and do not␣
→˓look them up.

Defaults to False. This can be used to make this function␣
→˓more performant when

the caller knows all the distinguished names being specified␣
→˓are valid, as it

performs far fewer queries.
:returns: A boolean indicating success.
:raises: InvalidLdapParameterException if computer is not a string or ADComputer␣

→˓object (continues on next page)

2.1. The ms_active_directory project 65

ms_active_directory, Release 1.9.1

(continued from previous page)

:raises: ObjectNotFoundException if a string DN is specified and it cannot be found
:raises: PermissionDeniedException if we fail to modify the Security Descriptor and␣

→˓raise_exception_on_failure
is true

set_group_security_descriptor(self, group: Union[str, ms_active_directory.core.ad_
→˓objects.ADGroup], new_sec_descriptor: ms_active_directory.environment.security.
→˓security_descriptor_utils.SelfRelativeSecurityDescriptor, raise_exception_on_failure:␣
→˓bool = True, skip_validation: bool = False) -> bool

Set the security descriptor on an Active Directory group. This can be used to change␣
→˓the owner of an

group in AD, change its permission ACEs, etc.

:param group: Either an ADGroup object or string name referencing the group to be␣
→˓modified

:param new_sec_descriptor: The security descriptor to set on the object.
:param raise_exception_on_failure: If true, raise an exception when modifying the␣

→˓object fails instead of
returning False.

:param skip_validation: If true, assume all distinguished names exist and do not␣
→˓look them up.

Defaults to False. This can be used to make this function␣
→˓more performant when

the caller knows all the distinguished names being specified␣
→˓are valid, as it

performs far fewer queries.
:returns: A boolean indicating success.
:raises: ObjectNotFoundException if a string DN is specified and it cannot be found
:raises: PermissionDeniedException if we fail to modify the Security Descriptor and␣

→˓raise_exception_on_failure
is true

set_object_security_descriptor(self, ad_object: Union[str, ms_active_directory.core.ad_
→˓objects.ADObject], new_sec_descriptor: ms_active_directory.environment.security.
→˓security_descriptor_utils.SelfRelativeSecurityDescriptor, raise_exception_on_failure:␣
→˓bool = True, skip_validation: bool = False) -> bool

Set the security descriptor on an Active Directory object. This can be used to␣
→˓change the owner of an

object in AD, change its permission ACEs, etc.

:param ad_object: Either an ADObject object or string distinguished name referencing␣
→˓the object to be modified

:param new_sec_descriptor: The security descriptor to set on the object.
:param raise_exception_on_failure: If true, raise an exception when modifying the␣

→˓object fails instead of
returning False.

:param skip_validation: If true, assume all distinguished names exist and do not␣
→˓look them up.

Defaults to False. This can be used to make this function␣
→˓more performant when

the caller knows all the distinguished names being specified␣
→˓are valid, as it

(continues on next page)

66 Chapter 2. Contents

ms_active_directory, Release 1.9.1

(continued from previous page)

performs far fewer queries.
:returns: A boolean indicating success.
:raises: ObjectNotFoundException if a string DN is specified and it cannot be found
:raises: PermissionDeniedException if we fail to modify the Security Descriptor and␣

→˓raise_exception_on_failure
is true

set_user_security_descriptor(self, user: Union[str, ms_active_directory.core.ad_objects.
→˓ADUser], new_sec_descriptor: ms_active_directory.environment.security.security_
→˓descriptor_utils.SelfRelativeSecurityDescriptor, raise_exception_on_failure: bool =␣
→˓True, skip_validation: bool = False) -> bool

Set the security descriptor on an Active Directory object. This can be used to␣
→˓change the owner of an

user in AD, change its permission ACEs, etc.

:param user: Either an ADUser object or string name referencing the user to be␣
→˓modified.

:param new_sec_descriptor: The security descriptor to set on the object.
:param raise_exception_on_failure: If true, raise an exception when modifying the␣

→˓object fails instead of
returning False.

:param skip_validation: If true, assume all distinguished names exist and do not␣
→˓look them up.

Defaults to False. This can be used to make this function␣
→˓more performant when

the caller knows all the distinguished names being specified␣
→˓are valid, as it

performs far fewer queries.
:returns: A boolean indicating success.
:raises: InvalidLdapParameterException if user is not a string or ADUser object
:raises: ObjectNotFoundException if a string DN is specified and it cannot be found
:raises: PermissionDeniedException if we fail to modify the Security Descriptor and␣

→˓raise_exception_on_failure
is true

Appending permissions to security descriptors:

add_permission_to_computer_security_descriptor(self, computer: Union[str, ms_active_
→˓directory.core.ad_objects.ADComputer], sids_to_grant_permissions_to: List[Union[str,␣
→˓ms_active_directory.environment.security.security_descriptor_utils.ObjectSid, ms_
→˓active_directory.environment.security.security_config_constants.WellKnownSID]], access_
→˓masks_to_add: List[ms_active_directory.environment.security.security_descriptor_utils.
→˓AccessMask] = None, rights_guids_to_add: List[Union[ms_active_directory.environment.
→˓security.ad_security_guids.ADRightsGuid, str]] = None, read_property_guids_to_add:␣
→˓List[str] = None, write_property_guids_to_add: List[str] = None, raise_exception_on_
→˓failure: bool = True, skip_validation: bool = False) -> bool

Add specified permissions to the security descriptor on a computer for specified␣
→˓SIDs.

This can be used to grant 1 or more other users/groups/computers/etc. the right to␣
→˓take broad actions or narrow

privileged actions on the computer, via adding access masks or rights guids␣
→˓respectively. It can also give

(continues on next page)

2.1. The ms_active_directory project 67

ms_active_directory, Release 1.9.1

(continued from previous page)

1 or more users/groups/computers/etc. the ability to read or write specific␣
→˓properties on the user by

specifying read or write property guids to add.

This can, as an example, take a computer and give a user the right to delete it. Or␣
→˓take a computer
and give a list of computers the right to read and write the user's owner SID. Or␣

→˓take a computer and let
another user reset their password without needing the current one. Etc. Etc.

:param computer: An ADComputer or String distinguished name, referring to the␣
→˓computer that will have the

permissions on it modified.
:param sids_to_grant_permissions_to: SIDs referring to the other entities that will␣

→˓be given new permissions
on the user. These may be ObjectSID objects,␣

→˓SID strings, or
WellKnownSIDs.

:param access_masks_to_add: A list of AccessMask objects to grant to the SIDs. These␣
→˓represent broad categories

of actions, such as GENERIC_READ and GENERIC_WRITE.
:param rights_guids_to_add: A list of rights guids to grant to the SIDs. These may␣

→˓be specified as strings or
as ADRightsGuid enums, and represent narrower␣

→˓permissions to grant to the SIDs for
targeted actions such as Unexpire_Password or Apply_

→˓Group_Policy. Some of these
do not make logical sense to use in all contexts, as␣

→˓some rights guids only have
meaning in a self-relative context, or only have meaning␣

→˓on some object types.
It is left up to the caller to decide what is meaningful.

:param read_property_guids_to_add: A list of property guids that represent␣
→˓properties of the computer that the

SIDs will be granted the right to read. These␣
→˓must be strings.

:param write_property_guids_to_add: A list of property guids that represent␣
→˓properties of the computer that the

SIDs will be granted the right to write. These␣
→˓must be strings.

:param raise_exception_on_failure: A boolean indicating if an exception should be␣
→˓raised if we fail to update

the security descriptor, instead of returning␣
→˓False. defaults to True

:param skip_validation: If true, assume all distinguished names exist and do not␣
→˓look them up.

Defaults to False. This can be used to make this function␣
→˓more performant when

the caller knows all the distinguished names being specified␣
→˓are valid, as it

performs far fewer queries.
:returns: A boolean indicating if we succeeded in updating the security descriptor.

(continues on next page)

68 Chapter 2. Contents

ms_active_directory, Release 1.9.1

(continued from previous page)

:raises: InvalidLdapParameterException if any inputs are the wrong type.
:raises: ObjectNotFoundException if the a string distinguished name is specified and␣

→˓cannot be found.
:raises: PermissionDeniedException if we fail to modify the Security Descriptor and␣

→˓raise_exception_on_failure
is true

add_permission_to_group_security_descriptor(self, group, sids_to_grant_permissions_to:␣
→˓List[Union[str, ms_active_directory.environment.security.security_descriptor_utils.
→˓ObjectSid, ms_active_directory.environment.security.security_config_constants.
→˓WellKnownSID]], access_masks_to_add: List[ms_active_directory.environment.security.
→˓security_descriptor_utils.AccessMask] = None, rights_guids_to_add: List[Union[ms_
→˓active_directory.environment.security.ad_security_guids.ADRightsGuid, str]] = None,␣
→˓read_property_guids_to_add: List[str] = None, write_property_guids_to_add: List[str] =␣
→˓None, raise_exception_on_failure: bool = True, skip_validation: bool = False) -> bool

Add specified permissions to the security descriptor on a group for specified SIDs.
This can be used to grant 1 or more other users/groups/computers/etc. the right to␣

→˓take broad actions or narrow
privileged actions on the group, via adding access masks or rights guids␣

→˓respectively. It can also give
1 or more users/groups/computers/etc. the ability to read or write specific␣

→˓properties on the group by
specifying read or write property guids to add.

This can, as an example, take a group and give another group the right to delete it.␣
→˓Or take a group
and give a list of computers the right to read the group's SID. Or take a group and␣

→˓let another user
add members to it. Etc. Etc.

:param group: An ADGroup or String distinguished name, referring to the group that␣
→˓will have the permissions on

it modified.
:param sids_to_grant_permissions_to: SIDs referring to the other entities that will␣

→˓be given new permissions
on the group. These may be ObjectSID objects,␣

→˓SID strings, or
WellKnownSIDs.

:param access_masks_to_add: A list of AccessMask objects to grant to the SIDs. These␣
→˓represent broad categories

of actions, such as GENERIC_READ and GENERIC_WRITE.
:param rights_guids_to_add: A list of rights guids to grant to the SIDs. These may␣

→˓be specified as strings or
as ADRightsGuid enums, and represent narrower␣

→˓permissions to grant to the SIDs for
targeted actions such as Unexpire_Password or Apply_

→˓Group_Policy. Some of these
do not make logical sense to use in all contexts, as␣

→˓some rights guids only have
meaning in a self-relative context, or only have meaning␣

→˓on some object types.
It is left up to the caller to decide what is meaningful.

(continues on next page)

2.1. The ms_active_directory project 69

ms_active_directory, Release 1.9.1

(continued from previous page)

:param read_property_guids_to_add: A list of property guids that represent␣
→˓properties of the group that the

SIDs will be granted the right to read. These␣
→˓must be strings.

:param write_property_guids_to_add: A list of property guids that represent␣
→˓properties of the group that the

SIDs will be granted the right to write. These␣
→˓must be strings.

:param raise_exception_on_failure: A boolean indicating if an exception should be␣
→˓raised if we fail to update

the security descriptor, instead of returning␣
→˓False. defaults to True

:param skip_validation: If true, assume all distinguished names exist and do not␣
→˓look them up.

Defaults to False. This can be used to make this function␣
→˓more performant when

the caller knows all the distinguished names being specified␣
→˓are valid, as it

performs far fewer queries.
:returns: A boolean indicating if we succeeded in updating the security descriptor.
:raises: InvalidLdapParameterException if any inputs are the wrong type.
:raises: ObjectNotFoundException if the a string distinguished name is specified and␣

→˓cannot be found.
:raises: PermissionDeniedException if we fail to modify the Security Descriptor and␣

→˓raise_exception_on_failure
is true

add_permission_to_object_security_descriptor(self, ad_object_to_modify: Union[str, ms_
→˓active_directory.core.ad_objects.ADObject], sids_to_grant_permissions_to:␣
→˓List[Union[str, ms_active_directory.environment.security.security_descriptor_utils.
→˓ObjectSid, ms_active_directory.environment.security.security_config_constants.
→˓WellKnownSID]], access_masks_to_add: List[ms_active_directory.environment.security.
→˓security_descriptor_utils.AccessMask] = None, rights_guids_to_add: List[Union[ms_
→˓active_directory.environment.security.ad_security_guids.ADRightsGuid, str]] = None,␣
→˓read_property_guids_to_add: List[str] = None, write_property_guids_to_add: List[str] =␣
→˓None, raise_exception_on_failure: bool = True, skip_validation: bool = False) -> bool

Add specified permissions to the security descriptor on an object for specified SIDs.
This can be used to grant 1 or more other users/groups/computers/etc. the right to␣

→˓take broad actions or narrow
privileged actions on the object, via adding access masks or rights guids␣

→˓respectively. It can also give
1 or more users/groups/computers/etc. the ability to read or write specific␣

→˓properties on the object by
specifying read or write property guids to add.

This can, as an example, take a container object and give a user the right to delete␣
→˓it. Or take a group object
and give a list of computers the right to read and write the group's members. Or␣

→˓take a computer and let a user
reset its password without needing the current one. Etc. Etc.

:param ad_object_to_modify: An ADObject or String distinguished name, referring to␣
→˓the object that will have (continues on next page)

70 Chapter 2. Contents

ms_active_directory, Release 1.9.1

(continued from previous page)

the permissions on it modified.
:param sids_to_grant_permissions_to: SIDs referring to the other entities that will␣

→˓be given new permissions
on the object. These may be ObjectSID objects,␣

→˓SID strings, or
WellKnownSIDs.

:param access_masks_to_add: A list of AccessMask objects to grant to the SIDs. These␣
→˓represent broad categories

of actions, such as GENERIC_READ and GENERIC_WRITE.
:param rights_guids_to_add: A list of rights guids to grant to the SIDs. These may␣

→˓be specified as strings or
as ADRightsGuid enums, and represent narrower␣

→˓permissions to grant to the SIDs for
targeted actions such as Unexpire_Password or Apply_

→˓Group_Policy. Some of these
do not make logical sense to use in all contexts, as␣

→˓some rights guids only have
meaning in a self-relative context, or only have meaning␣

→˓on some object types.
It is left up to the caller to decide what is meaningful.

:param read_property_guids_to_add: A list of property guids that represent␣
→˓properties of the object that the

SIDs will be granted the right to read. These␣
→˓must be strings.

:param write_property_guids_to_add: A list of property guids that represent␣
→˓properties of the object that the

SIDs will be granted the right to write. These␣
→˓must be strings.

:param raise_exception_on_failure: A boolean indicating if an exception should be␣
→˓raised if we fail to update

the security descriptor, instead of returning␣
→˓False. defaults to True

:param skip_validation: If true, assume all distinguished names exist and do not␣
→˓look them up.

Defaults to False. This can be used to make this function␣
→˓more performant when

the caller knows all the distinguished names being specified␣
→˓are valid, as it

performs far fewer queries.
:returns: A boolean indicating if we succeeded in updating the security descriptor.
:raises: InvalidLdapParameterException if any inputs are the wrong type.
:raises: ObjectNotFoundException if the a string distinguished name is specified and␣

→˓cannot be found.
:raises: PermissionDeniedException if we fail to modify the Security Descriptor and␣

→˓raise_exception_on_failure
is true

add_permission_to_user_security_descriptor(self, user: Union[str, ms_active_directory.
→˓core.ad_objects.ADUser], sids_to_grant_permissions_to: List[Union[str, ms_active_
→˓directory.environment.security.security_descriptor_utils.ObjectSid, ms_active_
→˓directory.environment.security.security_config_constants.WellKnownSID]], access_masks_
→˓to_add: List[ms_active_directory.environment.security.security_descriptor_utils.
→˓AccessMask] = None, rights_guids_to_add: List[Union[ms_active_directory.environment.
→˓security.ad_security_guids.ADRightsGuid, str]] = None, read_property_guids_to_add:␣
→˓List[str] = None, write_property_guids_to_add: List[str] = None, raise_exception_on_
→˓failure: bool = True, skip_validation: bool = False) -> bool

(continues on next page)

2.1. The ms_active_directory project 71

ms_active_directory, Release 1.9.1

(continued from previous page)

Add specified permissions to the security descriptor on a user for specified SIDs.
This can be used to grant 1 or more other users/groups/computers/etc. the right to␣

→˓take broad actions or narrow
privileged actions on the user, via adding access masks or rights guids respectively.

→˓ It can also give
1 or more users/groups/computers/etc. the ability to read or write specific␣

→˓properties on the user by
specifying read or write property guids to add.

This can, as an example, take a user and give another user the right to delete it.␣
→˓Or take a user
and give a list of computers the right to read and write the user's owner SID. Or␣

→˓take a user and let another
user reset their password without needing the current one. Etc. Etc.

:param user: An ADUser or String distinguished name, referring to the user that will␣
→˓have the permissions on it

modified.
:param sids_to_grant_permissions_to: SIDs referring to the other entities that will␣

→˓be given new permissions
on the user. These may be ObjectSID objects,␣

→˓SID strings, or
WellKnownSIDs.

:param access_masks_to_add: A list of AccessMask objects to grant to the SIDs. These␣
→˓represent broad categories

of actions, such as GENERIC_READ and GENERIC_WRITE.
:param rights_guids_to_add: A list of rights guids to grant to the SIDs. These may␣

→˓be specified as strings or
as ADRightsGuid enums, and represent narrower␣

→˓permissions to grant to the SIDs for
targeted actions such as Unexpire_Password or Apply_

→˓Group_Policy. Some of these
do not make logical sense to use in all contexts, as␣

→˓some rights guids only have
meaning in a self-relative context, or only have meaning␣

→˓on some object types.
It is left up to the caller to decide what is meaningful.

:param read_property_guids_to_add: A list of property guids that represent␣
→˓properties of the user that the

SIDs will be granted the right to read. These␣
→˓must be strings.

:param write_property_guids_to_add: A list of property guids that represent␣
→˓properties of the user that the

SIDs will be granted the right to write. These␣
→˓must be strings.

:param raise_exception_on_failure: A boolean indicating if an exception should be␣
→˓raised if we fail to update

the security descriptor, instead of returning␣
→˓False. defaults to True

:param skip_validation: If true, assume all distinguished names exist and do not␣
→˓look them up.

Defaults to False. This can be used to make this function␣
→˓more performant when (continues on next page)

72 Chapter 2. Contents

ms_active_directory, Release 1.9.1

(continued from previous page)

the caller knows all the distinguished names being specified␣
→˓are valid, as it

performs far fewer queries.
:returns: A boolean indicating if we succeeded in updating the security descriptor.
:raises: InvalidLdapParameterException if any inputs are the wrong type.
:raises: ObjectNotFoundException if the a string distinguished name is specified and␣

→˓cannot be found.
:raises: PermissionDeniedException if we fail to modify the Security Descriptor and␣

→˓raise_exception_on_failure
is true

Creating and Taking Over Objects in the Domain

There exist functions for creating and taking over objects in the domain. Currently this is limited to computers:

create_computer(self, computer_name: str, computer_location: str = None, computer_
→˓password: str = None, encryption_types: List[Union[str, ms_active_directory.
→˓environment.security.security_config_constants.ADEncryptionType]] = None, hostnames:␣
→˓List[str] = None, services: List[str] = None, supports_legacy_behavior: bool = False,␣
→˓**additional_account_attributes) -> ms_active_directory.core.managed_ad_objects.
→˓ManagedADComputer

Use the session to create a computer in the domain and return a computer object.
:param computer_name: The common name of the computer to create in the AD domain.␣

→˓This
will be used to determine the sAMAccountName, and if no␣

→˓hostnames
are specified then this will be used to determine the␣

→˓hostnames for
the computer.

:param computer_location: The distinguished name of the location within the domain␣
→˓where

the computer will be created. It may be a relative␣
→˓distinguished

name (not including the domain component) or a full␣
→˓distinguished

name. If not specified, defaults to CN=Computers which is
standard for Active Directory.

:param computer_password: The password to be set for the computer. This is␣
→˓particularly

useful to specify if the computer will be shared across␣
→˓multiple

applications or devices, or if pre-creating a computer for␣
→˓another

application to use. If not specified, a random 120␣
→˓character

password will be generated.
:param encryption_types: The encryption types to set as supported on the computer in␣

→˓AD.
These will also be used to generate kerberos keys for the␣

→˓computer.
If not specified, defaults to [aes256-cts-hmac-sha1-96].

(continues on next page)

2.1. The ms_active_directory project 73

ms_active_directory, Release 1.9.1

(continued from previous page)

:param hostnames: The hostnames to use for configuring the service principal names␣
→˓of the

computer. These may be short hostnames or fully qualified domain␣
→˓names.

If not specified, defaults to the "computer_name" as a short␣
→˓hostname and

"computer_name.domain" as a fully qualified domain name.
:param services: The services to enable on each hostname, which will be used with␣

→˓hostnames
to generate the computer's service principal names. If not␣

→˓specified,
defaults to ["HOST"] which is standard for Active Directory.

:param supports_legacy_behavior: Does the computer being created support legacy␣
→˓behavior such

as NTLM authentication or UNC path addressing from␣
→˓older windows

clients? Defaults to False. Impacts the␣
→˓restrictions on

computer naming.
:param additional_account_attributes: Additional LDAP attributes to set on the␣

→˓account and their
values. This is used to support power users␣

→˓setting arbitrary
attributes, such as "userCertificate" to set␣

→˓the certificate
for a computer that will use mutual TLS for␣

→˓EXTERNAL SASL auth.
This also allows overriding of some values␣

→˓that are not explicit
keyword arguments in order to avoid over-

→˓complication, since most
people won't set them (e.g.␣

→˓userAccountControl).
:returns: an ManagedADComputer object representing the computer.
:raises: DomainJoinException if any of our validation of the specified attributes␣

→˓fails or if anything
specified conflicts with objects in the domain.

:raises: ObjectCreationException if we fail to create the computer for a reason␣
→˓unrelated to what we can

easily validate in advance (e.g. permission issue)

take_over_existing_computer(self, computer: Union[ms_active_directory.core.managed_ad_
→˓objects.ManagedADComputer, ms_active_directory.core.ad_objects.ADObject, str],␣
→˓computer_password: str = None, old_computer_password: str = None) -> ms_active_
→˓directory.core.managed_ad_objects.ManagedADComputer

Use the session to take over a computer in the domain and return a computer object.
This resets the computer's password so that nobody else can impersonate it, and reads
the computer's attributes in order to create a computer object and return it.
:param computer: This can be an ManagedADComputer or ADObject object representing␣

→˓the computer that should be
taken over, or a string identifier for the computer. If it is a␣

→˓string, it should be

(continues on next page)

74 Chapter 2. Contents

ms_active_directory, Release 1.9.1

(continued from previous page)

the common name or sAMAccountName of the computer to find in the AD␣
→˓domain, or it can be

the distinguished name of a computer object.
If it appears to be a common name, not ending in $, a␣

→˓sAMAccountName will
be derived to search for. If that cannot be found, then a search␣

→˓will be
done for this as a common name. If no unique computer can be found␣

→˓with that
search, then an exception will be raised.

:param computer_password: The password to be set for the computer. This is␣
→˓particularly

useful to specify if the computer will be shared across␣
→˓multiple

applications or devices, or if pre-creating a computer for␣
→˓another

application to use. If not specified, a random 120␣
→˓character

password will be generated.
:param old_computer_password: The current password for the computer. This is used to␣

→˓reduce the level of
permissions needed for the takeover operation.

:returns: an ManagedADComputer object representing the computer.
:raises: DomainJoinException if any of our validation of the specified attributes␣

→˓fails or if anything
specified conflicts with objects in the domain.

:raises: ObjectNotFoundException if a computer cannot be found based on the name␣
→˓specified.

Utility Functions For Account Management

There are a number of functions for basic account management actions. These include modifying passwords in various
ways, disabling/enabling accounts, resetting lockouts, etc.

change_password_for_account(self, account: Union[str, ms_active_directory.core.ad_
→˓objects.ADUser, ms_active_directory.core.ad_objects.ADComputer], new_password: str,␣
→˓current_password: str, skip_validation: bool = False) -> bool

Change a password for a user (includes computers) given the new desired password and␣
→˓old desired password.

When a password is changed, the old password is provided along with the new one, and␣
→˓this significantly reduces

the permissions needed in order to perform the operation. By default, any user can␣
→˓perform CHANGE_PASSWORD for

any other user.
This also avoids invalidating kerberos keys generated by the old password. Their␣

→˓validity will depend on the
domain's policy regarding old passwords/keys and their allowable use period after␣

→˓change.

:param account: The account whose password is being changed. This may either be a␣
→˓string account name, to be

(continues on next page)

2.1. The ms_active_directory project 75

ms_active_directory, Release 1.9.1

(continued from previous page)

looked up, or an ADObject object.
:param current_password: The current password for the account.
:param new_password: The new password for the account. Technically, if None is␣

→˓specified, then this behaves
as a RESET_PASSWORD operation.

:param skip_validation: If true, assume all distinguished names exist and do not␣
→˓look them up.

Defaults to False. This can be used to make this function␣
→˓more performant when

the caller knows all the distinguished names being specified␣
→˓are valid, as it

performs far fewer queries.
:returns: True if the operation succeeds. If the operation fails, either an␣

→˓exception will be raised or False
will be returned depending on whether the ldap connection for this session␣

→˓has "raise_exceptions"
set to True or not.

disable_account(self, account: Union[str, ms_active_directory.core.ad_objects.ADUser, ms_
→˓active_directory.core.ad_objects.ADComputer]) -> bool

Disable a user account.
:param account: The string name of the user/computer account to disable. This may␣

→˓either be a
sAMAccountName, a distinguished name, or a unique common name. This␣

→˓can also be an ADObject,
and the distinguished name will be extracted from it.

:returns: True if the operation succeeds. If the operation fails, either an␣
→˓exception will be raised or False

will be returned depending on whether the ldap connection for this session␣
→˓has "raise_exceptions"

set to True or not.

enable_account(self, account: Union[str, ms_active_directory.core.ad_objects.ADComputer,␣
→˓ms_active_directory.core.ad_objects.ADUser]) -> bool

Enable a user account.
:param account: The string name of the user/computer account to enable. This may␣

→˓either be a
sAMAccountName, a distinguished name, or a unique common name. This␣

→˓can also be an ADObject,
and the distinguished name will be extracted from it.

:returns: True if the operation succeeds. If the operation fails, either an␣
→˓exception will be raised or False

will be returned depending on whether the ldap connection for this session␣
→˓has "raise_exceptions"

set to True or not.

reset_password_for_account(self, account: Union[str, ms_active_directory.core.ad_objects.
→˓ADUser, ms_active_directory.core.ad_objects.ADComputer], new_password: str, skip_
→˓validation: bool = False) -> bool

Resets a password for a user (includes computers) to a new desired password.
To reset a password, a new password is provided to replace the current one without␣

→˓providing the current

(continues on next page)

76 Chapter 2. Contents

ms_active_directory, Release 1.9.1

(continued from previous page)

password. This is a privileged operation and maps to the RESET_PASSWORD permission␣
→˓in AD.

:param account: The account whose password is being changed. This may either be a␣
→˓string account name, to be

looked up, or an ADObject object.
:param new_password: The new password for the account.
:param skip_validation: If true, assume all distinguished names exist and do not␣

→˓look them up.
Defaults to False. This can be used to make this function␣

→˓more performant when
the caller knows all the distinguished names being specified␣

→˓are valid, as it
performs far fewer queries.

:returns: True if the operation succeeds. If the operation fails, either an␣
→˓exception will be raised or False

will be returned depending on whether the ldap connection for this session␣
→˓has "raise_exceptions"

set to True or not.

unlock_account(self, account: Union[str, ms_active_directory.core.ad_objects.ADComputer,␣
→˓ms_active_directory.core.ad_objects.ADUser], skip_validation: bool = False) -> bool

Unlock a user who's been locked out for some period of time.
:param account: The string name of the user/computer account that has been locked␣

→˓out. This may either be a
sAMAccountName, a distinguished name, or a unique common name. This␣

→˓can also be an ADObject,
and the distinguished name will be extracted from it.

:param skip_validation: If true, assume all distinguished names exist and do not␣
→˓look them up.

Defaults to False. This can be used to make this function␣
→˓more performant when

the caller knows all the distinguished names being specified␣
→˓are valid, as it

performs far fewer queries.
:returns: True if the operation succeeds. If the operation fails, either an␣

→˓exception will be raised or False
will be returned depending on whether the ldap connection for this session␣

→˓has "raise_exceptions"
set to True or not.

Working With Trusted Domains

There exist functions for finding trusted domains as well as transferring authentication sessions to them:

create_transfer_sessions_to_all_trusted_domains(self, ignore_and_remove_failed_
→˓transfers=False) -> List[ForwardRef('ADSession')]

Create transfer sessions to all of the different active directory domains that trust␣
→˓the domain used for

this session.

(continues on next page)

2.1. The ms_active_directory project 77

ms_active_directory, Release 1.9.1

(continued from previous page)

:param ignore_and_remove_failed_transfers: If true, failures to transfer the session␣
→˓to a trusted domain will

be ignored, and will be excluded from␣
→˓results. If false, errors will

be raised by failed transfers. Defaults␣
→˓to false.

:returns: A list of ADSession objects representing the transferred authentication to␣
→˓the trusted domains.

:raises: Other LDAP exceptions if the attempt to bind the transfer session in the␣
→˓trusted domain fails due to

authentication issues (e.g. trying to use a non-transitive trust when␣
→˓transferring a user that is

not from the primary domain, transferring across a one-way trust when␣
→˓skipping validation,

transferring to a domain using SID filtering to restrict cross-domain users)

find_trusted_domains_for_domain(self, force_cache_refresh=False) -> List[ForwardRef(
→˓'ADTrustedDomain')]

Find the trusted domains for this domain.
If we have cached trusted domains for this session's domain, and the cache is still␣

→˓valid based on our
cache lifetime, return that.

:param force_cache_refresh: If true, don't use our cached trusted domains even if␣
→˓the cache is valid.

Defaults to false.
:returns: A list of ADTrustedDomain objects

Other Utility Functions

There are other miscellaneous functions for various utility actions, like checking the name of the user/computer the
current session has been established for, checking if distinguished names exist, checking the URI of the current server
a session is communicating with, etc.

dn_exists_in_domain(self, distinguished_name: str) -> bool
Check if a distinguished name exists within the domain, regardless of what it is.
:param distinguished_name: Either a relative distinguished name or full␣

→˓distinguished name
to search for within the domain.

:returns: True if the distinguished name exists within the domain.

get_current_server_uri(self) -> str
Returns the URI of the server that this session is currently communicating with

get_domain(self) -> 'ADDomain'
Returns the domain that this session is connected to

get_domain_dns_name(self) -> str
Returns the domain that this session is connected to

get_domain_search_base(self) -> str
(continues on next page)

78 Chapter 2. Contents

ms_active_directory, Release 1.9.1

(continued from previous page)

Returns the LDAP search base used for all 'find' functions as the search base

get_ldap_connection(self) -> ldap3.core.connection.Connection
Returns the LDAP connection that this session uses for communication.
This is particularly useful if a user wants to make complex LDAP queries or perform
operations that are not supported by the ADSession object, and is willing to craft
them and parse results themselves.

get_search_paging_size(self) -> int

get_trusted_domain_cache_lifetime_seconds(self) -> int

is_authenticated(self) -> bool
Returns if the session is currently authenticated

is_encrypted(self) -> bool
Returns if the session's connection is encrypted

is_open(self) -> bool
Returns if the session's connection is currently open

is_session_user_from_domain(self) -> bool
Return a boolean indicating whether or not the session's user is a member of the␣

→˓domain that we're
communicating with, or is trusted from another domain.
:returns: True if the user is from the domain we're communicating with, False␣

→˓otherwise.

is_thread_safe(self) -> bool
Returns if the session's connection is thread-safe

object_exists_in_domain_with_attribute(self, attr: str, unescaped_value: str) -> bool
Check if any objects exist in the domain with a given attribute. Returns True if so,␣

→˓False otherwise.
:param attr: The LDAP attribute to examine in the search.
:param unescaped_value: The value of the attribute that we're looking for, in its␣

→˓raw form.
:returns: True if any objects exist in the domain with the attribute specified equal␣

→˓to the value.

who_am_i(self) -> str
Return the authorization identity of the session's user as recognized by the server.
This can be helpful when a script is provided with an identity in one form that is␣

→˓used to start a session
(e.g. a distinguished name, or a pre-populated kerberos cache) and then it wants to␣

→˓determine its identity
that the server actually sees.
This just calls the LDAP connection function, as it's suitable for AD as well.
:returns: A string indicating the authorization identity of the session's user as␣

→˓recognized by the server.

Help on class ManagedADComputer in module ms_active_directory.core.managed_ad_objects:

2.1. The ms_active_directory project 79

ms_active_directory, Release 1.9.1

class ManagedADComputer(ManagedADObject)

ManagedADComputer(samaccount_name: str, domain: ‘ADDomain’, location: str = None, password: str =
None, service_principal_names: List[str] = None, encryption_types:
List[ms_active_directory.environment.security.security_config_constants.ADEncryptionType] = None, kvno:
int = None)

Method resolution order:
ManagedADComputer
ManagedADObject
builtins.object

Methods defined here:

__init__(self, samaccount_name: str, domain: ‘ADDomain’, location: str = None, password: str = None,
service_principal_names: List[str] = None, encryption_types:
List[ms_active_directory.environment.security.security_config_constants.ADEncryptionType] = None, kvno:
int = None)

Initialize self. See help(type(self)) for accurate signature.

add_encryption_type_locally(self, encryption_type:
ms_active_directory.environment.security.security_config_constants.ADEncryptionType)

Adds an encryption type to the computer locally. This will generate new kerberos keys
for the computer as a user and for all of the computer’s service principal names using the
new encryption type.
This function does nothing if the encryption type is already on the computer.
This function raises an exception if the computer’s password is not set, as the password is
needed to generate new kerberos keys.
:param encryption_type: The encryption type to add to the computer.

add_service_principal_name_locally(self, service_principal_name: str)
Adds a service principal name to the computer locally. This will generate new kerberos keys
for the computer to use to accept security contexts for the service principal name using
all raw kerberos keys that the account has (and therefore all encryption types it has).
This function does nothing if the service principal name is already on the computer.

:param service_principal_name: The service principal name to add to the computer.

get_computer_distinguished_name(self) -> str
Get the LDAP distinguished name for the computer. This raises an exception if location is not
set for the computer.

get_computer_name(self) -> str

get_encryption_types(self) ->
List[ms_active_directory.environment.security.security_config_constants.ADEncryptionType]

get_full_keytab_file_bytes_for_computer(self) -> bytes
Get the raw bytes that would comprise a complete keytab file for this computer. The

80 Chapter 2. Contents

ms_active_directory, Release 1.9.1

resultant bytes form a file that can be used to either accept GSS security contexts as a
server for any protocol and hostname combinations defined in the service principal names,
or initiate them as the computer with the computer’s user principal name being the
sAMAccountName.

get_name(self) -> str

get_server_kerberos_keys(self) -> List[ms_active_directory.core.ad_kerberos_keys.GssKerberosKey]

get_server_keytab_file_bytes_for_computer(self) -> bytes
Get the raw bytes that would comprise a server keytab file for this computer. The resultant
bytes form a file that can be used to accept GSS security contexts as a server for any protocol
and hostname combinations defined in the service principal names.

get_service_principal_names(self) -> List[str]

get_user_kerberos_keys(self) -> List[ms_active_directory.core.ad_kerberos_keys.GssKerberosKey]

get_user_keytab_file_bytes_for_computer(self) -> bytes
Get the raw bytes that would comprise a server keytab file for this computer. The
resultant bytes form a file that can be used to initiate GSS security contexts as the
computer with the computer’s user principal name being the sAMAccountName.

get_user_principal_name(self) -> str
Gets the user principal name for the computer, to be used in initiating GSS security contexts

set_encryption_types_locally(self, encryption_types:
List[ms_active_directory.environment.security.security_config_constants.ADEncryptionType])

Sets the encryption types of the computer locally. This will generate new kerberos keys
for the computer as a user and for all of the computer’s service principal names using the
new encryption type.
This function raises an exception if the computer’s password is not set, as the password is
needed to generate new kerberos keys.
:param encryption_types: The list of AD encryption types to set on the computer.

set_password_locally(self, password: str)
Sets the password on the AD computer locally. This will regenerate server and user kerberos
keys for all of the encryption types on the computer.
This function is meant to be used when the password was not set locally or was incorrectly set.
This function WILL NOT update the key version number of the kerberos keys; if a computer’s
password is actually changed, then update_password_locally should be used as that will update
the key version number properly and ensure the resultant kerberos keys can be properly used
for initiating and accepting security contexts.
:param password: The string password to set for the computer.

set_service_principal_names_locally(self, service_principal_names: List[str])
Sets the service principal names for the computer, and regenerates new server kerberos keys

2.1. The ms_active_directory project 81

ms_active_directory, Release 1.9.1

for all of the newly set service principal names.
:param service_principal_names: A list of string service principal names to set for the computer.

update_password_locally(self, password: str)
Update the password for the computer locally and generate new kerberos keys for the new
password.
:param password: The string password to set for the computer.

write_full_keytab_file_for_computer(self, file_path: str, merge_with_existing_file: bool = True)
Write all of the keytabs for this computer to a file, regardless of whether they represent keys for
the computer to authenticate with other servers as a client, or keys to authenticate clients when acting
as a server.

:param file_path: The path to the file where the keytabs will be written. If it does not exist, it will be
created.

:param merge_with_existing_file: If True, the computers keytabs will be added into the keytab file at
file_path if one exists. If False, the file at file_path will be
overwritten if it exists. If the file does not exist, this does nothing.
Defaults to True.

write_server_keytab_file_for_computer(self, file_path: str, merge_with_existing_file: bool = True)
Write all of the server keytabs for this computer to a file, which are the keys used to authenticate
clients when acting as a server.

:param file_path: The path to the file where the keytabs will be written. If it does not exist, it will be
created.

:param merge_with_existing_file: If True, the computers keytabs will be added into the keytab file at
file_path if one exists. If False, the file at file_path will be
overwritten if it exists. If the file does not exist, this does nothing.
Defaults to True.

write_user_keytab_file_for_computer(self, file_path: str, merge_with_existing_file: bool = True)
Write all of the user keytabs for this computer to a file, which are the keys used to authenticate
with other servers when acting as a client.

:param file_path: The path to the file where the keytabs will be written. If it does not exist, it will be
created.

:param merge_with_existing_file: If True, the computers keytabs will be added into the keytab file at
file_path if one exists. If False, the file at file_path will be
overwritten if it exists. If the file does not exist, this does nothing.
Defaults to True.

———————————————————————-
Methods inherited from ManagedADObject:

get_domain(self) -> ‘ADDomain’

82 Chapter 2. Contents

ms_active_directory, Release 1.9.1

get_domain_dns_name(self) -> str

get_samaccount_name(self) -> str

———————————————————————-
Data descriptors inherited from ManagedADObject:

__dict__
dictionary for instance variables (if defined)

__weakref__
list of weak references to the object (if defined)

Secondary Objects in ms_active_directory

The following are objects that you may interact with in order to construct other objects, or which may be returned by
function calls. These often contain information describing an entity within a domain or describing an aspect of an
entity.

GssKerberosKey Objects

class GssKerberosKey(builtins.object)
GssKerberosKey(principal: str, realm: str, raw_key: ms_active_directory.core.ad_

→˓kerberos_keys.RawKerberosKey, kvno: int, flags: int = None, timestamp: int = None, gss_
→˓name_type: int = 0, format_version: int = 2)

A kerberos key that can actually be used in kerberos negotiation (as either a user␣
→˓or a server).

This is a raw key properly wrapped with encoded additional information about the␣
→˓principal, kvno,

encryption type, etc.

Methods defined here:

__init__(self, principal: str, realm: str, raw_key: ms_active_directory.core.ad_
→˓kerberos_keys.RawKerberosKey, kvno: int, flags: int = None, timestamp: int = None, gss_
→˓name_type: int = 0, format_version: int = 2)

Initialize self. See help(type(self)) for accurate signature.

get_complete_keytab_bytes(self, format_version: int = None, use_current_time: bool =␣
→˓None)

Get this key object encoded as the bytes of a complete, usable keytab that can␣
→˓be written

to a file and used for kerberos authentication (initiating or accepting␣
→˓contexts).

:param format_version: An keytab format version. If not specified, defaults to␣
→˓the format version

in the object. If the object's format version is null,␣
→˓defaults to 2.

:param use_current_time: Whether or not the current time should be used as the␣
→˓timestamp in the (continues on next page)

2.1. The ms_active_directory project 83

ms_active_directory, Release 1.9.1

(continued from previous page)

keytab produced, overwriting the time in the object. If␣
→˓no timestamp is

in the object, the current time is used. Defaults to␣
→˓False if not specified.

get_raw_key_bytes(self)

set_flags(self, flags: int)
Sets the flags and clears complete_gss_keytab_bytes so we re-compute it

set_format_version(self, format_version: int)
Sets the keytab format version and clears complete_gss_keytab_bytes so we re-

→˓compute it

set_gss_name_type(self, name_type: int)
Sets the gss name type and friendly name type and clears complete_gss_keytab_

→˓bytes so we re-compute it

set_kvno(self, kvno: int)
Sets the kvno and clears complete_gss_keytab_bytes so we re-compute it

set_principal(self, principal: str)
Sets the principal and clears complete_gss_keytab_bytes so we re-compute it

set_raw_key(self, raw_key: ms_active_directory.core.ad_kerberos_keys.RawKerberosKey)
Sets the raw key, updates our encryption type and clears complete_gss_keytab_

→˓bytes so we re-compute it.
The encryption type is directly tied to our raw key and vice versa, so setting␣

→˓one without the other makes no
sense.

set_realm(self, realm: str)
Sets the realm and clears complete_gss_keytab_bytes so we re-compute it

set_timestamp(self, timestamp: int)
Sets the timestamp and clears complete_gss_keytab_bytes so we re-compute it

uses_active_directory_supported_encryption_type(self)

RawKerberosKey Objects

class RawKerberosKey(builtins.object)
RawKerberosKey(enc_type: Union[ms_active_directory.environment.security.security_

→˓config_constants.ADEncryptionType, str], key_bytes: bytes)

A raw kerberos key - containing only the generated shared secret and the encryption␣
→˓type.

This does not contain any information about who's using it, its purpose, etc. and is␣
→˓tied

only to the password used, the salt, and the encryption type. It can therefore be␣
→˓used to (continues on next page)

84 Chapter 2. Contents

ms_active_directory, Release 1.9.1

(continued from previous page)

generate usable kerberos keys for either accepting or initiating GSS authentication.

Methods defined here:

__init__(self, enc_type: Union[ms_active_directory.environment.security.security_
→˓config_constants.ADEncryptionType, str], key_bytes: bytes)

Initialize self. See help(type(self)) for accurate signature.

get_hex_encoded_key(self)

get_key_bytes(self)

get_raw_hex_encoded_key(self)

uses_active_directory_supported_encryption_type(self)

Examples of Using Key Features

The following are the key features of the library that have examples.

Discovering a Domain

The library supports discovering LDAP and Kerberos servers within a domain using special DNS entries defined for
Active Directory.

Smart Defaults

By default, it will use the system DNS configuration, find LDAP servers that support TLS, and sort LDAP and Kerberos
servers by the RTT to communicate with them.

Here’s an example of creating a simple configuration and working with server discovery.

from ms_active_directory import ADDomain

example_domain_dns_name = 'example.com'
domain = ADDomain(example_domain_dns_name)
ldap_servers = domain.get_ldap_uris()
kerberos_servers = domain.get_kerberos_uris()

re-discover servers in dns and sort them by RTT again at a later time to pick up␣
→˓changes
domain.refresh_ldap_server_discovery()
domain.refresh_kerberos_server_discovery()

2.1. The ms_active_directory project 85

ms_active_directory, Release 1.9.1

Site Awareness and Flexible DNS

The library also supports site awareness, which will result in only discovering servers within a specified Active Direc-
tory Site. You can also specify alternative DNS nameservers to use instead of the system ones.

Here’s an example of specifying an AD site and alternative DNS server.

from ms_active_directory import ADDomain

example_domain_dns_name = 'example.com'
site_name = 'us-eastern-datacenter'
domain = ADDomain(example_domain_dns_name, site=site_name,

dns_nameservers=['eastern-private-dns-01.local'])

Network Multi-Tenancy and Security Support

You can also specify exactly which LDAP or Kerberos servers should be used, and skip discovery. Additional config-
urations are available such as configuring the CA file path to use for trust, and the source IP to use for outbound traffic
to the domain, which is helpful when there are firewall rules in place, or when a machine has both private and public
IP addresses.

Here’s an example of specifying which servers to communicate with, and CA certs to secure that communication.

from ms_active_directory import ADDomain

example_domain_dns_name = 'example.com'
local_machine_ip = '10.251.12.1'
local_ldap_ip = '10.251.12.30'
public_machine_ip = '194.32.21.30'
the servers that live on the public internet use well-known public
CAs for trust, but we have a local CA for the private network servers
private_securing_cas = '/etc/internal-ca.cert'

set up an object for the local domain in the same network as this machine,
but also have an instance that can be used to make instances to reach out
to the rest of the domain outside of the local private network
local_domain = ADDomain(example_domain_dns_name, ldap_servers_or_uris=[local_ldap_ip],

source_ip=local_ldap_ip, ca_certificates_file_path=private_
→˓securing_cas)
global_domain = ADDomain(example_domain_dns_name, source_ip=public_machine_ip)

Local System Configuration

By default, you’ll need to configure your local system files to enable kerberos authentication to work properly. However,
you can also automatically set up the krb5 configuration when creating a domain object.

from ms_active_directory import ADDomain

example_domain_dns_name = 'example.com'
set up the local system krb5 config based on discovered kerberos uris
domain = ADDomain(example_domain_dns_name,

auto_configure_kerberos_client=True)

86 Chapter 2. Contents

ms_active_directory, Release 1.9.1

The file configured will be /etc/krb5.conf on posix systems (e.g. macOS, Ubuntu), and on windows both /winnt/
krb5.ini and /windows/krb5.iniwill be configured for backwards compatibility. By default, a new kerberos realm
configuration will be merged into these files if they exist, or new files will be created if none exists.

If you want to update a different configuration file, or if you want to overwrite the file instead of updating it, or if you
want to set things like a default realm, you can also directly call the function for configuring the local system.

from ms_active_directory.environment.kerberos.kerberos_client_configurer import update_
→˓system_kerberos_configuration_for_domains
from ms_active_directory import ADDomain

example_domain_dns_name = 'example.com'
domain = ADDomain(example_domain_dns_name)

overwrite the existing file instead of updating it
update_system_kerberos_configuration_for_domains([domain], merge_with_existing_
→˓file=False)
update a file in a different location
update_system_kerberos_configuration_for_domains([domain], krb5_location='/etc/user_100/
→˓krb5.conf')
set a default authentication realm
update_system_kerberos_configuration_for_domains([domain], default_domain=domain)

Note: if multiple ADDomain objects all attempt to configure the local system kerberos file, only one will “win”. This
means that if they have different sites specified, or used different source addresses on a network where kdc reachability
is reliant on that source address, having a single ADDomain object automatically configure the krb5 configuration file
can be risky.

In these scenarios, it’s recommended that you manually write the krb5 configuration or that you set up an ADDomain
object with kerberos uris for the entire domain and use that to initiate the auto-configuration.

Discovering Additional Domain Resources

The library supports discovering a wide variety of information about the domain beyond the basics needed to commu-
nicate with it. This discovery doesn’t require you to know any niche information about Active Directory.

Discoverable resources include but are not limited to:

1. Supported SASL mechanisms, which is important for authentication

2. The current domain time, which is important for NTP synchronization

3. Domain Functional Level, which governs things like support encryption types

4. DNS servers

5. Issuing certificates for CAs in the domain

2.1. The ms_active_directory project 87

ms_active_directory, Release 1.9.1

Finding supported SASL mechanisms

Discovering SASL mechanisms can be done without needing to create a session with a domain, as it’s needed before
authentication in many cases.

from ms_active_directory import ADDomain
domain = ADDomain('example.com')

might print "['EXTERNAL', 'DIGEST-MD5']"
print(domain.find_supported_sasl_mechanisms())

Finding the current domain time

Discovering the domain time can be done without needing to create a session with a domain, as time synchronization
is necessary for kerberos authentication to succeed and can impact TLS negotiation as well.

from ms_active_directory import ADDomain
domain = ADDomain('example.com')

returns a python datetime object in utc time
curr_time = domain.find_current_time()

allowed drift defaults to 5 minutes which is the kerberos standard,
but we can use a shorter window to detect drift before it causes an
outage. this returns a boolean
synced = domain.is_close_in_time_to_localhost(allowed_drift_seconds=60)

Finding the domain functional level

Discovering the domain time can be done without needing to create a session with a domain, as it can inform us as to
what encryption types and TLS versions/ciphers will be supported by the domain.

from ms_active_directory import ADDomain
domain = ADDomain('example.com')

find_functional_level returns an enum indicating the level.
decision making based on level should be done based on the
needs of your application
print(domain.find_functional_level())

Finding DNS servers

Discovering DNS servers requires an authenticated session with the domain, as searching the records within the domain
for computers that run a DNS service is privileged.

from ms_active_directory import ADDomain
domain = ADDomain('example.com')

session = domain.create_session_as_user('username@example.com', 'password')
(continues on next page)

88 Chapter 2. Contents

ms_active_directory, Release 1.9.1

(continued from previous page)

returns a map that maps server hostnames -> ip addresses, where
the hostnames are computers running dns services
dns_map = session.find_dns_servers_for_domain()
ip_addrs = dns_map.values()
hostnames = dns_map.keys()

Finding CA certificates

Discovering DNS servers requires an authenticated session with the domain, as searching the records within the domain
for records that are indicated as being certificate authorities is privileged.

from ms_active_directory import ADDomain
domain = ADDomain('example.com')

session = domain.create_session_as_user('username@example.com', 'password')
returns a list of PEM-formatted strings representing the signing certificates
of all certificate authorities in the domain
pem_certs = session.find_certificate_authorities_for_domain()

you can also get the certificates in DER format, which might be
preferred on windows
der_certs = session.find_certificate_authorities_for_domain(pem_format=False)

Creating a Session With a Domain

You can establish a session with the AD Domain on behalf of either a user or computer.

Broadly, any keyword arguments that would normally be supported when creating a Connection with the ldap3
library are supported when creating a session, allowing for flexibility while still providing an “it just works” option for
most users.

Support for Computer Authentication

Computers default to using Kerberos SASL authentication, as SIMPLE authentication is not support for computers
with Active Directory. To use kerberos, either gssapi or winkerberos must be installed.

Here’s an example of authenticating as a computer

from ms_active_directory import ADDomain
domain = ADDomain('example.com')

when using kerberos auth, the default is to use the kerberos
credential cache on the machine, so no password is needed
computer_name = 'machine01'
session1 = domain.create_session_as_computer(computer_name)

but you can pass sasl credentials, and if you use gssapi you can
specify a username and password
see the ldap3 documentation for details on SASL credentials and other

(continues on next page)

2.1. The ms_active_directory project 89

ms_active_directory, Release 1.9.1

(continued from previous page)

connection options
other_name = 'other-machine-identity'
password = 'password01'
session2 = domain.create_session_as_computer(other_name, sasl_credentials=('', other_
→˓name, password))

You can also use other authentication mechanisms like NTLM.:

from ldap3 import NTLM
from ms_active_directory import ADDomain
domain = ADDomain('example.com')

ntlm_name = 'EXAMPLE.COM\\computer01'
password = 'password1'
session = domain.create_session_as_computer(ntlm_name, password, authentication_
→˓mechanism=NTLM)

Support for User Authentication

You can authenticate as a user by using simple binds, or by using SASL mechanisms or NTLM as computers do. The
default for users is simple binds.

Here’s an example of using some different authentication mechanisms for the same user:

from ldap3 import NTLM
from ms_active_directory import ADDomain
domain = ADDomain('example.com')

session = domain.create_session_as_user('username@example.com', 'password')
ntlm_session = domain.create_session_as_user('username@example.com', 'password',␣
→˓authentication_mechanism=NTLM)

Joining an Active Directory Domain

The action of joining a computer to a domain is not a well-defined operation, and so the exact mechanics of how
you utilize the domain joining functionality and how its outputs are integrated with the rest of your system will vary
depending on your use case.

This will try to cover some common examples.

Join the domain with default configurations for everything

The default behavior requires only the domain name and the credentials of a user with sufficient administrative rights
to create computers within the domain.

from ms_active_directory import join_ad_domain

comp = join_ad_domain('example.com', 'Administrator@example.com', 'example-password')

90 Chapter 2. Contents

ms_active_directory, Release 1.9.1

The join_ad_domain function returns a ManagedADComputer object with many helpful functions describing prop-
erties of the created computer.

This will use the local hostname of the machine running this code as the computer name. It will create the computer
in AD’s default Computers container.

It enables AES256-SHA1 as an encryption type for both receiving and initiating kerberos contexts, and it configures
<local hostname>.<domain dns name> as the hostname of the computer in AD and registers the default HOST
service.

It then writes kerberos keys for the new computer account to /etc/krb5.keytab, which is the default location for
kerberos keytabs.

This all enables the account to be used for authenticating with other domain resources as a client over protocols like
SMB and LDAP using kerberos, as well as receiving incoming kerberos authentication as a server for things like SSH.
This is because the HOST service encapsulates many standard services in the domain.

However, it is still up to the caller to do things like configure sshd to utilize the keytab.

Join the domain with customization of the account for security reasons

A number of customizations exist for security reasons.

You can change things like the encryption types enabled on the account to support older clients. You can also change
location where the account is created when joining a domain in order to use a less privileged user for the act of joining.
Locations can be LDAP distinguished names or windows path style canonical names.

You can also set the computer name if you have a desired naming scheme. This will impact the hostnames configured
in the domain for the computer.

from ms_active_directory import join_ad_domain, ADEncryptionType

domain = 'example.com'
less_privileged_user = 'ops-manager@example.com'
password = 'password2'
ldap-style relative distinguished name of a location
less_privileged_loc = 'OU=service-machines,OU=ops'
computer_name = 'workstation10'

legacy_enc_type = ADEncryptionType.RC4_HMAC
new_enc_type = ADEncryptionType.AES256_CTS_HMAC_SHA1_96

comp = join_ad_domain(domain, less_privileged_user, password, computer_name=computer_
→˓name,

computer_location=less_privileged_loc, computer_encryption_
→˓types=[legacy_enc_type, new_enc_type])

alt_format_loc = '/ops/service-machines'
comp = join_ad_domain(domain, less_privileged_user, password, computer_name=computer_
→˓name,

computer_location=alt_format_loc, computer_encryption_
→˓types=[legacy_enc_type, new_enc_type])

You can also manually set the computer password. The default is to generate a random 120 character password, but if
you want to share this computer across services, and some cannot interact with the generated kerberos keys, then you
may wish to set a password manually.

2.1. The ms_active_directory project 91

ms_active_directory, Release 1.9.1

You can also change where the kerberos keys are written to.

from ms_active_directory import join_ad_domain

domain = 'example.com'
user = 'ops-manager@example.com'
password = 'password2'
kerberos_key_location = '/usr/shared/keys/workstation-key.keytab'
computer_name = 'workstation10'
computer_password = 'workstation-shared-pw'

comp = join_ad_domain(domain, user, password, computer_key_file_path=kerberos_key_
→˓location,

computer_name=computer_name, computer_password=computer_password)

Join the domain with different network or service settings

You can configure different hostnames for your computer when joining the domain. This is useful when you have
multiple different hostnames for a single device, or want to use a computer name that doesn’t match your network
name.

You can also configure services in order to restrict or broaden what is supported by the computer when acting as a
server (e.g. you can add nfs if the machine will be an nfs server).

Joining will fail if another computer in the domain is using the services you specify on any of the hostnames you specify
in order to avoid conflicts that cause undefined behavior.

from ms_active_directory import join_ad_domain

domain = 'example.com'
user = 'ops-manager@example.com'
password = 'password2'

services = ['HOST', 'nfs', 'cifs', 'HTTP']
computer_name = 'workstation10'
computer_host1 = 'central-mount-point.example.com'
computer_host2 = 'example-web-server.example.com'
comp = join_ad_domain(domain, user, password, computer_name=computer_name,

computer_hostnames=[computer_host1, computer_host2],
computer_services=services)

Join using a domain object

You can use an ADDomain object to join the domain as well, using a join function. This allows you to combine all of
the functionality mentioned earlier around site-awareness, server preferences, TLS settings, and network multi-tenancy
with the domain joining functionality mentioned in this section.

The parameters are all the same, except the domain need not be provided when using an ADDomain object, so it just
adds more functionality in exchange for a slightly less simple workflow.

from ms_active_directory import ADDomain

(continues on next page)

92 Chapter 2. Contents

ms_active_directory, Release 1.9.1

(continued from previous page)

domain = ADDomain('example.com', site='us-eastern-dc',
source_ip='10.25.21.30', dns_nameservers=['10.25.21.20'])

user = 'ops-manager@example.com'
password = 'password2'
less_privileged_loc = 'OU=service-machines,OU=ops'
services = ['HOST', 'nfs', 'cifs', 'HTTP']
computer_name = 'workstation10'

comp = domain.join(user, password, computer_hostnames=[computer_host1, computer_host2],
computer_services=services, computer_location=less_privileged_loc)

Join the domain by taking over an existing account

For some setups, accounts may be pre-created and then taken over by the computers that will use them.

This can be done in order to greatly restrict the permissions of the user that is used for joining, as they only need RESET
PASSWORD permissions on the computer account, or CHANGE PASSWORD if the current computer password is provided.

from ms_active_directory import ADDomain, join_ad_domain_by_taking_over_existing_computer

domain_dns_name = 'example.com'
site = 'us-eastern-dc'
existing_computer_name = 'precreated-comp'
user = 'single-account-admin@example.com'
password = 'password2'

computer_obj = join_ad_domain_by_taking_over_existing_computer(domain_dns_name, user,␣
→˓password,

ad_site=site, computer_
→˓name=existing_computer_name)

or use a domain object to use various power-user domain features
domain = ADDomain(domain_dns_name, site=site,

source_ip='10.25.21.30', dns_nameservers=['10.25.21.20'])
domain.join_by_taking_over_existing_computer(user, password, computer_name=existing_
→˓computer_name)

Finding and Working With Trusted Domains

You can discover trusted domains using a session, and check properties about them.

from ms_active_directory import ADDomain
domain = ADDomain('example.com')
session = domain.create_session_as_user('username@example.com', 'password')

trusted_domains = session.find_trusted_domains_for_domain()

split domains up based on trust type
trusted_mit_domains = [dom for dom in trusted_domains if dom.is_mit_trust()]

(continues on next page)

2.1. The ms_active_directory project 93

ms_active_directory, Release 1.9.1

(continued from previous page)

trusted_ad_domains = [dom for dom in trusted_domains if dom.is_active_directory_domain_
→˓trust()]

print a few attributes that may be relevant
for ad_dom in trusted_ad_domains:

print('FQDN: {}'.format(ad_dom.get_netbios_name()))
print('Netbios name: {}'.format(ad_dom.get_netbios_name()))
print('Disabled: {}'.format(ad_dom.is_disabled())
print('Bi-directional: {}'.format(ad_dom.is_bidirectional_trust())
print('Transitive: {}'.format(ad_dom.is_transitive_trust())

Turning Trusted Domains into ADDomains

You can also convert AD domains that are trusted into fully usable ADDomain objects for the purpose of creating
sessions and looking up information there.

from ms_active_directory import ADDomain
from ldap3 import NTLM
domain = ADDomain('example.com')
widely_trusted_user = 'example.com\\org-admin'
password = 'password'

primary_session = domain.create_session_as_user(widely_trusted_user, password,
authentication_mechanism=NTLM)

get our trusted AD domains
trusted_domains = session.find_trusted_domains_for_domain()
trusted_ad_domains = [dom for dom in trusted_domains if dom.is_active_directory_domain_
→˓trust()]

convert them into domains where our user should be trusted
domains_our_user_can_auth_with = []
for trusted_dom in trusted_ad_domains:

if trusted_dom.trusts_primary_domain() and not trusted_dom.is_disabled():
full_domain = trusted_dom.convert_to_ad_domain()
domains_our_user_can_auth_with.append(full_domain)

create sessions so we can search across many domains
all_user_sessions = [primary_session]
for dom in domains_our_user_can_auth_with:

SASL is needed for cross-domain authentication in general
session = dom.create_session_as_user(widely_trusted_user, password,

authentication_mechanism=NTLM)
all_user_sessions.append(session)

94 Chapter 2. Contents

ms_active_directory, Release 1.9.1

Transferring Sessions Across Domains

You can convert an existing authenticated session with one domain into an authenticated session with a trusted AD
domain that trusts the first domain.

from ms_active_directory import ADDomain
from ldap3 import NTLM
domain = ADDomain('example.com')
widely_trusted_user = 'example.com\\org-admin'
password = 'password'

primary_session = domain.create_session_as_user(widely_trusted_user, password,
authentication_mechanism=NTLM)

get our trusted AD domains
trusted_domains = session.find_trusted_domains_for_domain()
filter for a domain being AD and it trusting the primary domain
trusted_ad_domains = [dom for dom in trusted_domains if dom.is_active_directory_domain_
→˓trust()

and dom.trusts_primary_domain()]

create a new session with the trusted domain using our existing primary domain session,
and use it to look up users/groups/etc. in the other domain
transferred_session = trusted_ad_domains[0].create_transfer_session_to_trusted_
→˓domain(primary_session)
transferred_session.find_user_by_name('other-domain-user')

Expanding A Session To All Its Trusted Domains

You can also automatically have a session create sessions for all its trusted domains that trust the session’s domain.

from ms_active_directory import ADDomain
from ldap3 import NTLM
domain = ADDomain('example.com')
widely_trusted_user = 'example.com\\org-admin'
password = 'password'

primary_session = domain.create_session_as_user(widely_trusted_user, password,
authentication_mechanism=NTLM)

find a user that we know exists somewhere, but not the primary domain
user_to_find = 'some-lost-user'
by default this filters to AD domains, and further filters to domains that trust the␣
→˓session's domain
if the user used for the session is from the session's domain (which they are in this
example)
trust_sessions = primary_session.create_transfer_sessions_to_all_trusted_domains()
user = None
for session in trust_sessions:

user = session.find_user_by_name(user_to_find)
if user is not None:

(continues on next page)

2.1. The ms_active_directory project 95

ms_active_directory, Release 1.9.1

(continued from previous page)

print('Found user in {}'.format(session.get_domain_dns_name()))
break

Finding users, computers, and groups

The library provides a number of different functions for finding users, computers, and groups by different identifiers,
and for querying information about them.

Looking up users, computers, groups, and information about them

Users, computers, and groups can both be looked up by one of:

• sAMAccountName

• distinguished name

• common name

• a generic “name” that will attempt the above 3

• an attribute

Look up by sAMAccountName

A sAMAccountName is unique within a domain, and so looking up users or groups by sAMAccountName returns a
single result. sAMAccountName was a user’s windows logon name in older versions of windows, and may be referred
to as such in some documentation.

For computers, the standard convention is for their sAMAccountName to end with a $, but many tools/docs leave that
out. So if a sAMAccountName is specified that does not end with a $ and cannot be found, a lookup will also be
attempted after adding a $ to the end.

When looking up users, computers, and groups, you can also query for additional information about them by specifying
a list of LDAP attributes.

from ms_active_directory import ADDomain
domain = ADDomain('example.com')
session = domain.create_session_as_user('username@example.com', 'password')

user = session.find_user_by_sam_name('user1', ['employeeID'])
group = session.find_group_by_sam_name('group1', ['gidNumber'])
users and groups support a generic "get" for any attributes queried
print(user.get('employeeID'))
print(group.get('gidNumber'))

96 Chapter 2. Contents

ms_active_directory, Release 1.9.1

Look up by distinguished name

A distinguished name is unique within a forest, and so looking up users or groups by it returns a single result. A
distinguished name should not be escaped when provided to the search function.

When looking up users, computers, and groups, you can also query for additional information about them by specifying
a list of LDAP attributes.

from ms_active_directory import ADDomain
domain = ADDomain('example.com')
session = domain.create_session_as_user('username@example.com', 'password')

user_dn = 'CN=user one,CN=Users,DC=example,DC=com'
user = session.find_user_by_distinguished_name(user_dn, ['employeeID'])
group_dn = 'CN=group one,OU=employee-groups,DC=example,DC=com'
group = session.find_group_by_distinguished_name(group_dn, ['gidNumber'])
users and groups support a generic "get" for any attributes queried
print(user.get('employeeID'))
print(group.get('gidNumber'))

Look up by common name

A common name is not unique within a domain, and so looking up users or groups by it returns a list of results, which
may have 0 or more entries.

When looking up users, computers, and groups, you can also query for additional information about them by specifying
a list of LDAP attributes.

from ms_active_directory import ADDomain
domain = ADDomain('example.com')
session = domain.create_session_as_user('username@example.com', 'password')

user_cn = 'John Doe'
users = session.find_users_by_common_name(user_cn, ['employeeID'])
group_dn = 'operations managers'
groups = session.find_groups_by_common_name(group_dn, ['gidNumber'])
users and groups support a generic "get" for any attributes queried
for user in users:

print(user.get('employeeID'))
for group in groups:

print(group.get('gidNumber'))

Look up by generic name

You can also query by a generic “name”, and the library will attempt to find a unique user or group with that name.
The library will either lookup by DN or will attempt sAMAccountName and common name lookups depending on the
name format.

If more than one result is found by common name and no result is found by sAMAccountName then this will produce
an error.

2.1. The ms_active_directory project 97

ms_active_directory, Release 1.9.1

from ms_active_directory import ADDomain
domain = ADDomain('example.com')
session = domain.create_session_as_user('username@example.com', 'password')

user_name = 'John Doe'
user = session.find_user_by_name(user_name, ['employeeID'])
group_name = 'operations managers'
groups = session.find_groups_by_name(group_name, ['gidNumber'])
users and groups support a generic "get" for any attributes queried
print(user.get('employeeID'))
print(group.get('gidNumber'))

Look up by attribute

You can also query for users, computers, or groups that possess a certain value for a specified attribute. This can
produce any number of results, so a list is returned.

from ms_active_directory import ADDomain
domain = ADDomain('example.com')
session = domain.create_session_as_user('username@example.com', 'password')

desired_employee_type = 'temporary'
users = session.find_users_by_attribute('employeeType', desired_employee_type, [
→˓'employeeID'])
desired_group_manager = 'Alice P Hacker'
groups = session.find_groups_by_attribute('managedBy', desired_group_manager, ['gidNumber
→˓'])

users and groups support a generic "get" for any attributes queried
for user in users:

print(user.distinguished_name)
print(user.get('employeeID'))

for group in groups:
print(group.distinguished_name)
print(group.get('gidNumber'))

Updating user, computer, or group attributes.

You can use this library to modify the values of various LDAP attributes on users, computers, groups, or generic objects.

Users, computers, and groups provide the convenient name lookup functionality mentioned above, while for generic
objects you either need to pass an ADObject or a distinguished name.

98 Chapter 2. Contents

ms_active_directory, Release 1.9.1

Appending to one or more attributes

You can atomically append values to multi-valued attributes, such as accountNameHistory. This allows you to update
their values without needing to know the current value or worry about race conditions, as it’s handled server-side.

from ms_active_directory import ADDomain
domain = ADDomain('example.com')
session = domain.create_session_as_user('username@example.com', 'password')

user_name = 'sarah1'
previous_account_name = 'sarah'
success = session.atomic_append_to_attribute_for_user(user_name, 'accountNameHistory',

previous_account_name)

you can also append multiple values at once, or append to multiple
attributes at once
user_name = 'monica pham-chen'
previous_account_names = ['monica pham', 'monica chen']
previous_uid = 'mpham'
update_map = {

'accountNameHistory': previous_account_names,
'uid': previous_uid

}
success = session.atomic_append_to_attributes_for_user(user_name, update_map)

You can also perform these actions on groups and objects using the similarly named func-
tions atomic_append_to_attribute_for_group, atomic_append_to_attributes_for_group,
atomic_append_to_attribute_for_computer, atomic_append_to_attributes_for_computer,
atomic_append_to_attribute_for_object, and atomic_append_to_attributes_for_object.

Overwriting one or more attributes

If you want to totally replace the value of an attribute, that’s supported as well. This can be done for single-valued or
multi-valued attributes.

from ms_active_directory import ADDomain
domain = ADDomain('example.com')
session = domain.create_session_as_user('username@example.com', 'password')

user_name = 'arjun'
new_uid_number = 1093
success = session.overwrite_attribute_for_user(user_name, 'uidNumber',

new_uid_number)

just like appending, we can do multiple attributes at once atomically
user_name = 'nikita'
new_employee_type = 'Director'
new_gid = 0
new_addresses = [
'123 mulberry lane',
'456 vacation home drive'

]
(continues on next page)

2.1. The ms_active_directory project 99

ms_active_directory, Release 1.9.1

(continued from previous page)

new_value_map = {
'employeeType': new_employee_type,
'gidNumber': new_gid,
'postalAddress': new_addresses

}
success = session.overwrite_attributes_for_user(user_name, new_value_map)

You can also perform these actions on groups and objects using the similarly named functions, just like with appending.

Managing User, Computer, and Group Membership

You can look up the groups that a user belongs to, the groups that a computer belongs to, or the groups that a group
belongs to. Active Directory supports nested groups, which is why there’s user->groups, computer->groups, and
group->groups mapping capability.

When querying the membership information for users or groups, the input type for any user or group must either
be a string name identifying the user, computer, or group as described in the prior section, or must be an ADUser,
ADComputer, or ADGroup object returned by one of the functions described in the prior section.

Similarly to looking up users, computers, and groups, you can query for attributes of the parent groups by providing a
list of LDAP attributes to look up for them.

from ms_active_directory import ADDomain
domain = ADDomain('example.com')
session = domain.create_session_as_user('username@example.com', 'password')

user_sam_account_name = 'user-sam-1'
user_dn = 'CN=user sam 1,CN=users,DC=example,DC=com'
user_cn = 'user same 1'

desired_group_attrs = ['gidNumber', 'managedBy']
all 3 of these do the same thing, and internally map the different
name types to a user object
groups_res1 = session.find_groups_for_user(user_sam_account_name, desired_group_attrs)
groups_res2 = session.find_groups_for_user(user_dn, desired_group_attrs)
groups_res3 = session.find_groups_for_user(user_cn, desired_group_attrs)

you can also directly use a user object to query groups
user_obj = session.find_user_by_name(user_sam_account_name)
groups_res4 = session.find_groups_for_user(user_obj, desired_group_attrs)

you can also look up the parents of groups in the same way
example_group_obj = groups_res4[0]
example_group_dn = example_group_obj.distinguished_name

these both work. sAMAccountName could also be used, etc.
second_level_groups_res1 = session.find_groups_for_group(example_group_obj, desired_
→˓group_attrs)
second_level_groups_res2 = session.find_groups_for_group(example_group_dn, desired_group_
→˓attrs)

You can also query users->groups, computers->groups, and groups->groups to find the memberships of mul-
tiple users, computers, and groups, and the library will make a minimal number of queries to determine membership;

100 Chapter 2. Contents

ms_active_directory, Release 1.9.1

it will be more efficient that doing a user->groups for each user (or similar for computers and groups). The result
will be a map that maps the input users or groups to lists of parent groups.

The input lists’ elements must be the same format as what’s provided when looking up group memberships for a single
user or group.

from ms_active_directory import ADDomain
domain = ADDomain('example.com')
session = domain.create_session_as_user('username@example.com', 'password')

user1_name = 'user1'
user2_name = 'user2'
users = [user1_name, user2_name]
desired_group_attrs = ['gidNumber', 'managedBy']

user_group_map = session.find_groups_for_users(users, desired_group_attrs)
the dictionary result keys are the users from the input
user1_groups = user_group_map[user1_name]
user2_groups = user_group_map[user2_name]

you can use the groups->groups mapping functionality to enumerate the
full tree of a users' group memberships (or a groups' group memberships)
user1_second_level_groups_map = session.find_groups_for_groups(user1_groups, desired_
→˓group_attrs)
all_second_level_groups = []
for group_list in user1_second_level_groups_map.values():

for group in group_list:
if group not in all_second_level_groups:

all_second_level_groups.append(group)
all_user1_groups_in_2_levels = user1_groups + all_second_level_groups

Finding the members of groups

You can look up the members of one or more groups and get attributes about those members.

from ms_active_directory import ADDomain, ADUser, ADGroup
domain = ADDomain('example.com')
session = domain.create_session_as_user('username@example.com', 'password')

get emails of users and groups that are members
desired_attrs = ['mail']

look up members of a single group
single_group_member_list = session.find_members_of_group('group1', desired_attrs)

look up members of multiple groups at once
groups = ['group1', 'group2']
group_to_member_list_map = session.find_members_of_groups(groups, desired_attrs)
group2_member_list = group_to_member_list_map['group2']
group2_user_members = [mem for mem in group2_member_list if isintance(mem, ADUser)]
group2_group_members = [mem for mem in group2_member_list if isintance(mem, ADGroup)]

You can also look up members recursively to handle nesting. A maximum depth for lookups may be specified, but by

2.1. The ms_active_directory project 101

ms_active_directory, Release 1.9.1

default all nesting will be enumerated.

from ms_active_directory import ADDomain, ADUser, ADGroup
domain = ADDomain('example.com')
session = domain.create_session_as_user('username@example.com', 'password')

get emails of users and groups that are members
desired_attrs = ['mail']
group_name = 'has-groups-as-members'
groups_to_member_lists_maps = session.find_members_of_groups_recursive(group_name,␣
→˓desired_attrs)

Adding users to groups

You can add users to groups by specifying a list of ADUser objects or string names of AD users to be added to the
groups, and a list of ADGroup objects or string names of AD groups to add the users to.

If string names are specified, they’ll be mapped to users/groups using the functions discussed in the prior sections.

If a user is already in a group, this is idempotent and will not re-add them.

from ms_active_directory import ADDomain
domain = ADDomain('example.com')
session = domain.create_session_as_user('username@example.com', 'password')

user1_name = 'user1'
user2_name = 'user2'
group1_name = 'target-group1'
group2_name = 'target-group2'

session.add_users_to_groups([user1_name, user2_name],
[group1_name, group2_name])

By default, if we fail to add users to one of the groups specified, we’ll attempt to rollback and remove users from any
groups they were added to. You can choose to forgo this and a list of groups that users were successfully added to will
be returned instead.

from ms_active_directory import ADDomain
domain = ADDomain('example.com')
session = domain.create_session_as_user('username@example.com', 'password')

user1_name = 'user1'
user2_name = 'user2'
group1_name = 'target-group1'
group2_name = 'target-group2'
privileged_group = 'group-that-will-fail'

succeeeded = session.add_users_to_groups([user1_name, user2_name],
[group1_name, group2_name, privileged_group],
stop_and_rollback_on_error=False)

this will print "['target-group1', 'target-group2']" assuming that
adding users to 'group-that-will-fail' failed
print(succeeeded)

102 Chapter 2. Contents

ms_active_directory, Release 1.9.1

Adding groups to groups

Adding groups to other groups works exactly the same way as adding users to groups, but the function is called
add_groups_to_groups and both inputs are lists of groups.

Adding computers to groups

Adding computers to groups works exactly the same way as adding users to groups, but the function is called
add_computers_to_groups and the first input is a list of computers.

Removing users, computers, or groups from groups

Removing users, computers, or groups from groups works identically to adding users, computers, or groups to groups,
including input format, idempotency, and rollback functionality. The only difference is that the functions are called
remove_users_from_groups, remove_computers_from_groups, and remove_groups_from_groups instead.

Feel free to contribute more! See the main page for information on how to contribute.

Exceptions

The following exception types have been created for this library. If you wish to create a catch-all try/except then you
can use MsActiveDirectoryException, as it’s the parent exception for all others.

class MsActiveDirectoryException(Exception): “”” A parent class for all other exceptions so that users can
have a catch-all exception for functional issues that still doesn’t blind them to things like accidentally providing
a string where a number is needed. “””

class AttributeModificationException(MsActiveDirectoryException): “”” An exception raised when
an error is encountered modifying attributes of users, groups, etc. “””

class DomainConnectException(MsActiveDirectoryException): “”” An exception raised when an error is
encountered connecting to an AD Domain “””

class DomainJoinException(MsActiveDirectoryException): “”” An exception raised when an error is en-
countered joining to an AD Domain or validating the join “””

class DomainSearchException(MsActiveDirectoryException): “”” An exception raised when an error is
encountered searching an AD Domain “””

class DuplicateNameException(MsActiveDirectoryException): “”” An exception raised when multiple
records are found during an operation that expects to operate on a unique object “””

class InvalidComputerParameterException(MsActiveDirectoryException): “”” An exception raised
when functions are called on a ManagedADComputer object with invalid parameters or that rely on unpopu-
lated attributes. “””

class InvalidDomainParameterException(MsActiveDirectoryException): “”” An exception raised when
invalid parameters are used for creating a domain object or establishing a connection with a domain. “””

class InvalidLdapParameterException(MsActiveDirectoryException): “”” An exception raised when a
parameter specified is not of a proper type or format to convert to an LDAP attribute as needed for a function.
“””

class KeytabEncodingException(MsActiveDirectoryException): “”” An exception raised when a keytab is
read in from a file but the encoding is invalid “””

2.1. The ms_active_directory project 103

ms_active_directory, Release 1.9.1

class LdapResponseDecodeException(MsActiveDirectoryException): “”” An exception raised when an
LDAP response cannot be parsed properly “””

class MembershipModificationException(MsActiveDirectoryException): “”” An exception raised when
an error is encountered modifying group memberships, and rollback of the incomplete changes was successful.
“””

class MembershipModificationRollbackException(MsActiveDirectoryException): “”” An exception
raised when an error is encountered modifying group memberships, but rollback of the incomplete changes
was unsuccessful. “””

class ObjectCreationException(MsActiveDirectoryException): “”” An exception raised when an error is
encountered creating an object “””

class ObjectNotFoundException(MsActiveDirectoryException): “”” An exception raised when an object
cannot be found when performing validation that an object exists as part of a function. “””

class PermissionDeniedException(MsActiveDirectoryException): “”” An exception raised when permis-
sion errors occur operating within AD “””

class SecurityDescriptorDecodeException(MsActiveDirectoryException): “”” An exception raised
when errors occur decoding a security descriptor “””

class SecurityDescriptorEncodeException(MsActiveDirectoryException): “”” An exception raised
when errors occur encoding a security descriptor “””

class SessionTransferException(MsActiveDirectoryException): “”” An exception raised when errors
occur transferring an authentication session from one domain to another “””

class TrustedDomainConversionException(MsActiveDirectoryException): “”” An exception raised
when trying to convert a trusted domain that has a non-AD type to an ADDomain “””

Generating Kerberos Keys From AD Passwords

ad_password_string_to_key(ad_encryption_type: ms_active_directory.environment.security.
→˓security_config_constants.ADEncryptionType, ad_computer_name: str, ad_password: str,␣
→˓ad_domain_dns_name: str, ad_auth_realm: str = None) -> ms_active_directory.core.ad_
→˓kerberos_keys.RawKerberosKey

Given an encryption type, a computer name, a password, and a domain, generate the␣
→˓raw kerberos key for an AD

account. Optionally, a realm may be specified if the kerberos realm for the domain␣
→˓is not the domain itself

(this may be the case for subdomains or when AD is not the central authentication␣
→˓for an environment).

:param ad_encryption_type: The kerberos encryption type to use for generating the␣
→˓key.

:param ad_computer_name: The name of the computer in AD. This is the sAMAccountName␣
→˓without the trailing $.

:param ad_password: The password of the computer.
:param ad_domain_dns_name: The DNS name of the AD domain where the computer exists.
:param ad_auth_realm: The realm used by the domain for authentication. If not␣

→˓specified, defaults to the domain
in all captial letters.

104 Chapter 2. Contents

ms_active_directory, Release 1.9.1

Joining an AD Domain

To join the local machine to an AD Domain, you can use an ADDomain object and use its function, but there’s also a
standalone function that can be imported from the library directly as:

>>> from ms_active_directory import join_ad_domain

This function can be used to have a 1-line call to join the machine to the domain by creating a new computer to represent
it.

You can specify a lot of properties about the computer to be created, but by default it will be named after the local
machine’s hostname (if it’s a valid AD name) and created in AD’s default Computers container. A strong password is
set for the computer that is 120 characters long and random, strong encryption types are enabled, and Kerberos keys
will be generated for the computer and written to the standard default system location (/etc/krb5.keytab).

A ManagedADComputer object is returned which has many helper functions for reading information about the created
computer and managing its keys.

To join a domain and create a new computer, use the following function:

join_ad_domain(domain_dns_name: str, admin_username: str, admin_password: str,␣
→˓authentication_mechanism: str = 'SIMPLE',

ad_site: str = None, computer_name: str = None, computer_location: str =␣
→˓None, computer_password: str = None,

computer_encryption_types: List[Union[str, ms_active_directory.
→˓environment.security.security_config_constants.ADEncryptionType]] = None,

computer_hostnames: List[str] = None, computer_services: List[str] = None,
supports_legacy_behavior: bool = False, computer_key_file_path: str = '/

→˓etc/krb5.keytab',
**additional_account_attributes) -> ms_active_directory.core.managed_ad_

→˓objects.ManagedADComputer

A super simple 'join a domain' function that requires minimal input - the domain dns␣
→˓name and admin credentials

to use in the join process.
Given those basic inputs, the domain's nearest controllers are automatically␣

→˓discovered and an account is made
with strong security settings. The account's attributes follow AD naming conventions␣

→˓based on the computer's
hostname by default.
:param domain_dns_name: The DNS name of the domain being joined.
:param admin_username: The username of a user or computer with the rights to create␣

→˓the computer.
This username should be formatted based on the authentication␣

→˓protocol being used.
For example, DOMAIN\username for NTLM as opposed to␣

→˓username@DOMAIN for GSSAPI, or
a distinguished name for SIMPLE.
If `old_computer_password` is specified, then this account␣

→˓only needs permission to
change the password of the computer being taken over, which␣

→˓is different from the reset
password permission.

:param admin_password: The password for the user. Optional, as SASL authentication␣
→˓mechanisms can use

(continues on next page)

2.1. The ms_active_directory project 105

ms_active_directory, Release 1.9.1

(continued from previous page)

`sasl_credentials` specified as a keyword argument, and␣
→˓things like KERBEROS will use

default system kerberos credentials if they're available.
:param authentication_mechanism: An LDAP authentication mechanism or SASL mechanism.␣

→˓If 'SASL' is specified,
then the keyword argument `sasl_mechanism` must␣

→˓also be specified. Valid values
include all authentication mechanisms and SASL␣

→˓mechanisms from the ldap3
library, such as SIMPLE, NTLM, KERBEROS, etc.

:param ad_site: Optional. The site within the active directory domain where our␣
→˓communication should be confined.

:param computer_name: The name of the computer to take over in the domain. This␣
→˓should be the sAMAccountName

of the computer, though if computer has a trailing $ in its␣
→˓sAMAccountName and that is

omitted, that's ok. If not specified, we will attempt to find␣
→˓a computer with a name

matching the local system's hostname.
:param computer_location: The location in which to create the computer. This may be␣

→˓specified as an LDAP-style
relative distinguished name (e.g. OU=ServiceMachines,

→˓OU=Machines) or a windows path
style canonical name (e.g. example.com/Machines/

→˓ServiceMachines).
If not specified, defaults to CN=Computers which is the␣

→˓standard default for AD.
:param computer_password: The password to set for the computer when taking it over.␣

→˓If not specified, a random
120 character password will be generated and set.

:param computer_encryption_types: A list of encryption types, based on the␣
→˓ADEncryptionType enum, to enable on

the account created. These may be strings or enums;
→˓ if they are strings,

they should be strings of the encryption types as␣
→˓written in kerberos

RFCs or in AD management tools, and we will try to␣
→˓map them to enums and

raise an error if they don't match any supported␣
→˓values.

AES256-SHA1, AES128-SHA1, and RC4-HMAC encryption␣
→˓types are supported. DES

encryption types aren not.
If not specified, defaults to [AES256-SHA1].

:param computer_hostnames: Hostnames to set for the computer. These will be used to␣
→˓set the dns hostname

attribute in AD. If not specified, the computer hostnames␣
→˓will default to

[`computer_name`, `computer_name`.`domain`] which is the␣
→˓AD standard default.

:param computer_services: Services to enable on the computers hostnames. These␣
→˓services dictate what clients

(continues on next page)

106 Chapter 2. Contents

ms_active_directory, Release 1.9.1

(continued from previous page)

can get kerberos tickets for when communicating with this␣
→˓computer, and this property

is used with `computer_hostnames` to set the service␣
→˓principal names for the computer.

For example, having `nfs` specified as a service principal␣
→˓is necessary if you want

to run an NFS server on this computer and have clients get␣
→˓kerberos tickets for

mounting shares; having `ssh` specified as a service␣
→˓principal is necessary for

clients to request kerberos tickets for sshing to the␣
→˓computer.

If not specified, defaults to `HOST` which is the standard␣
→˓AD default service.

`HOST` covers a wide variety of services, including `cifs`,
→˓ `ssh`, and many others

depending on your domain. Determining exactly what␣
→˓services are covered by `HOST`

in your domain requires checking the aliases set on a␣
→˓domain controller.

:param supports_legacy_behavior: If `True`, then an error will be raised if the␣
→˓computer name is longer than

15 characters (not including the trailing $). This␣
→˓is because various older

systems such as NTLM, certain UNC path applications,
→˓ Netbios, etc. cannot

use names longer than 15 characters. This name␣
→˓cannot be changed after

creation, so this is important to control at␣
→˓creation time.

If not specified, defaults to `False`.
:param computer_key_file_path: The path of where to write the keytab file for the␣

→˓computer after taking it over.
This will include keys for both user and server keys␣

→˓for the computer.
If not specified, defaults to /etc/krb5.keytab

:param additional_account_attributes: Additional keyword argument can be specified␣
→˓to set other LDAP attributes

of the computer that are not covered above, or␣
→˓where the above controls

are not sufficiently granular. For example,␣
→˓`userAccountControl` could

be used to set the user account control values␣
→˓for the computer if it's

desired to set it differently from the default␣
→˓(e.g. create a computer

in a disabled state and enable it later).
:returns: A ManagedADComputer object representing the computer created.

2.1. The ms_active_directory project 107

ms_active_directory, Release 1.9.1

Joining an AD Domain by taking over an existing computer

To join the local machine to an AD Domain, you can use an ADDomain object and use its function, but there’s also a
standalone function that can be imported from the library directly as:

>>> from ms_active_directory import join_ad_domain_by_taking_over_existing_computer

This function can be used to have a 1-line call to join the machine to the domain by taking over a pre-created computer
account. This is convenient for setups where the computer is pre-created with a lot of settings so that the machines
joining don’t need to know what attribute values to set.

Taking over an existing computer returns the a ManagedADComputer object, and writes kerberos keys to the local file
system and such, but there’s no option to specify things like services and dns hostnames as those are read from the
existing computer.

To take over a computer in this way, use the following function:

join_ad_domain_by_taking_over_existing_computer(domain_dns_name: str, admin_username:␣
→˓str, admin_password: str,

authentication_mechanism: str = 'SIMPLE',
→˓ ad_site: str = None,

computer_name: str = None, computer_
→˓password: str = None,

old_computer_password: str = None,
computer_key_file_path: str = '/etc/krb5.

→˓keytab',
**additional_connection_attributes) ->␣

→˓ms_active_directory.core.managed_ad_objects.ManagedADComputer

A super simple 'join a domain' function using pre-created computer accounts, which␣
→˓requires minimal input -

the domain dns name and admin credentials to use in the join process.
Specifying a computer name explicitly for the account to take over is also highly␣

→˓recommended.

Given those basic inputs, the domain's nearest controllers are automatically␣
→˓discovered and the computer account

with the specified computer name is found and taken over so it can represent the␣
→˓local system in the domain,

and the local system can act as it.
:param domain_dns_name: The DNS name of the domain being joined.
:param admin_username: The username of a user or computer with the rights to reset␣

→˓the password of the computer
being taken over.
This username should be formatted based on the authentication␣

→˓protocol being used.
For example, DOMAIN\username for NTLM as opposed to␣

→˓username@DOMAIN for GSSAPI, or
a distinguished name for SIMPLE.
If `old_computer_password` is specified, then this account␣

→˓only needs permission to
change the password of the computer being taken over, which␣

→˓is different from the reset
password permission.

:param admin_password: The password for the user. Optional, as SASL authentication␣
→˓mechanisms can use (continues on next page)

108 Chapter 2. Contents

ms_active_directory, Release 1.9.1

(continued from previous page)

`sasl_credentials` specified as a keyword argument, and␣
→˓things like KERBEROS will use

default system kerberos credentials if they're available.
:param authentication_mechanism: An LDAP authentication mechanism or SASL mechanism.␣

→˓If 'SASL' is specified,
then the keyword argument `sasl_mechanism` must␣

→˓also be specified. Valid values
include all authentication mechanisms and SASL␣

→˓mechanisms from the ldap3
library, such as SIMPLE, NTLM, KERBEROS, etc.

:param ad_site: Optional. The site within the active directory domain where our␣
→˓communication should be confined.

:param computer_name: The name of the computer to take over in the domain. This␣
→˓should be the sAMAccountName

of the computer, though if computer has a trailing $ in its␣
→˓sAMAccountName and that is

omitted, that's ok. If not specified, we will attempt to find␣
→˓a computer with a name

matching the local system's hostname.
:param computer_password: The password to set for the computer when taking it over.␣

→˓If not specified, a random
120 character password will be generated and set.

:param old_computer_password: The current password of the computer being taken over.␣
→˓If specified, the action

of taking over the computer will use a "change password
→˓" operation, which is less

privileged than a "reset password" operation. So␣
→˓specifying this reduces the

permissions needed by the user specified.
:param computer_key_file_path: The path of where to write the keytab file for the␣

→˓computer after taking it over.
This will include keys for both user and server keys␣

→˓for the computer.
If not specified, defaults to /etc/krb5.keytab

:param additional_connection_attributes: Additional keyword arguments may be␣
→˓specified for any properties of

the `Connection` object from the `ldap3`␣
→˓library that is desired to

be set on the connection used in the␣
→˓session created for taking over

the computer. Examples include `sasl_
→˓credentials`, `client_strategy`,

`cred_store`, and `pool_lifetime`.
:returns: A ManagedADComputer object representing the computer taken over.

2.1. The ms_active_directory project 109

ms_active_directory, Release 1.9.1

Joining an AD Domain Using an Existing Session

To join the local machine to an AD Domain, you can use an ADDomain object and use its function, but if you already
have an existing session that you want to leverage, there’s a standalone function that can be imported from the library
directly as:

>>> from ms_active_directory import join_ad_domain_using_session

This function can be used to have a 1-line call to join the machine to the domain by creating a new computer to represent
it, using a session you got from elsewhere.

You can specify a lot of properties about the computer to be created, but by default it will be named after the local
machine’s hostname (if it’s a valid AD name) and created in AD’s default Computers container. A strong password is
set for the computer that is 120 characters long and random, strong encryption types are enabled, and Kerberos keys
will be generated for the computer and written to the standard default system location (/etc/krb5.keytab).

A ManagedADComputer object is returned which has many helper functions for reading information about the created
computer and managing its keys.

To join a domain using a pre-existing session and create a new computer, use the following function:

join_ad_domain_using_session(ad_session: ms_active_directory.core.ad_session.ADSession,␣
→˓computer_name=None, computer_location=None,

computer_password=None, computer_encryption_types=None,␣
→˓computer_hostnames=None,

computer_services=None, supports_legacy_behavior=False,␣
→˓computer_key_file_path='/etc/krb5.keytab',

**additional_account_attributes) -> ms_active_directory.
→˓core.managed_ad_objects.ManagedADComputer

A fairly simple 'join a domain' function that requires minimal input - an AD session.
Given those basic inputs, the domain's nearest controllers are automatically␣

→˓discovered and an account is made
with strong security settings. The account's attributes follow AD naming conventions␣

→˓based on the computer's
hostname by default.
By providing an AD session, one can build a connection to the domain however they so␣

→˓choose and then use it to
join this computer, so you don't even need to necessarily use user credentials.
:param ad_session: The ADSession object representing a connection with the domain to␣

→˓be joined.
:param computer_name: The name of the computer to take over in the domain. This␣

→˓should be the sAMAccountName
of the computer, though if computer has a trailing $ in its␣

→˓sAMAccountName and that is
omitted, that's ok. If not specified, we will attempt to find␣

→˓a computer with a name
matching the local system's hostname.

:param computer_location: The location in which to create the computer. This may be␣
→˓specified as an LDAP-style

relative distinguished name (e.g. OU=ServiceMachines,
→˓OU=Machines) or a windows path

style canonical name (e.g. example.com/Machines/
→˓ServiceMachines).

If not specified, defaults to CN=Computers which is the␣
→˓standard default for AD.

(continues on next page)

110 Chapter 2. Contents

ms_active_directory, Release 1.9.1

(continued from previous page)

:param computer_password: The password to set for the computer when taking it over.␣
→˓If not specified, a random

120 character password will be generated and set.
:param computer_encryption_types: A list of encryption types, based on the␣

→˓ADEncryptionType enum, to enable on
the account created. These may be strings or enums;

→˓ if they are strings,
they should be strings of the encryption types as␣

→˓written in kerberos
RFCs or in AD management tools, and we will try to␣

→˓map them to enums and
raise an error if they don't match any supported␣

→˓values.
AES256-SHA1, AES128-SHA1, and RC4-HMAC encryption␣

→˓types are supported. DES
encryption types aren not.
If not specified, defaults to [AES256-SHA1].

:param computer_hostnames: Hostnames to set for the computer. These will be used to␣
→˓set the dns hostname

attribute in AD. If not specified, the computer hostnames␣
→˓will default to

[`computer_name`, `computer_name`.`domain`] which is the␣
→˓AD standard default.

:param computer_services: Services to enable on the computers hostnames. These␣
→˓services dictate what clients

can get kerberos tickets for when communicating with this␣
→˓computer, and this property

is used with `computer_hostnames` to set the service␣
→˓principal names for the computer.

For example, having `nfs` specified as a service principal␣
→˓is necessary if you want

to run an NFS server on this computer and have clients get␣
→˓kerberos tickets for

mounting shares; having `ssh` specified as a service␣
→˓principal is necessary for

clients to request kerberos tickets for sshing to the␣
→˓computer.

If not specified, defaults to `HOST` which is the standard␣
→˓AD default service.

`HOST` covers a wide variety of services, including `cifs`,
→˓ `ssh`, and many others

depending on your domain. Determining exactly what␣
→˓services are covered by `HOST`

in your domain requires checking the aliases set on a␣
→˓domain controller.

:param supports_legacy_behavior: If `True`, then an error will be raised if the␣
→˓computer name is longer than

15 characters (not including the trailing $). This␣
→˓is because various older

systems such as NTLM, certain UNC path applications,
→˓ Netbios, etc. cannot

use names longer than 15 characters. This name␣
→˓cannot be changed after (continues on next page)

2.1. The ms_active_directory project 111

ms_active_directory, Release 1.9.1

(continued from previous page)

creation, so this is important to control at␣
→˓creation time.

If not specified, defaults to `False`.
:param computer_key_file_path: The path of where to write the keytab file for the␣

→˓computer after taking it over.
This will include keys for both user and server keys␣

→˓for the computer.
If not specified, defaults to /etc/krb5.keytab

:param additional_account_attributes: Additional keyword argument can be specified␣
→˓to set other LDAP attributes

of the computer that are not covered above, or␣
→˓where the above controls

are not sufficiently granular. For example,␣
→˓`userAccountControl` could

be used to set the user account control values␣
→˓for the computer if it's

desired to set it differently from the default␣
→˓(e.g. create a computer

in a disabled state and enable it later).
:returns: A ManagedADComputer object representing the computer created.

Joining an AD Domain by taking over an existing computer using an existing session

To join the local machine to an AD Domain, you can use an ADDomain object and use its function, but if you already
have a pre-existing session from elsewhere, there’s also a standalone function that can be imported from the library
directly as:

>>> from ms_active_directory import join_ad_domain_by_taking_over_existing_computer_
→˓using_session

This function can be used to have a 1-line call to join the machine to the domain by taking over a pre-created computer
account. This is convenient for setups where the computer is pre-created with a lot of settings so that the machines
joining don’t need to know what attribute values to set.

Taking over an existing computer returns the a ManagedADComputer object, and writes kerberos keys to the local file
system and such, but there’s no option to specify things like services and dns hostnames as those are read from the
existing computer.

To take over a computer in this way, use the following function:

join_ad_domain_by_taking_over_existing_computer_using_session(ad_session: ms_active_
→˓directory.core.ad_session.ADSession,

computer_name=None,␣
→˓computer_password=None, old_computer_password=None,

computer_key_file_path='/
→˓etc/krb5.keytab') -> ms_active_directory.core.managed_ad_objects.ManagedADComputer

A fairly simple 'join a domain' function using pre-created accounts, which requires␣
→˓minimal input - an AD

session. Specifying the name of the computer to takeover explicitly is also␣
→˓encouraged.

Given those basic inputs, the domain's nearest controllers are automatically␣
→˓discovered and an account is found (continues on next page)

112 Chapter 2. Contents

ms_active_directory, Release 1.9.1

(continued from previous page)

with the computer name specified.
That account is then taken over so that it can be controlled by the local system,␣

→˓and kerberos keys and such are
generated for it.

By providing an AD session, one can build a connection to the domain however they so␣
→˓choose and then use it to

join this computer, so you don't even need to necessarily use user credentials.
:param ad_session: The ADSession object representing a connection with the domain to␣

→˓be joined.
:param computer_name: The name of the computer to take over in the domain. This␣

→˓should be the sAMAccountName
of the computer, though if computer has a trailing $ in its␣

→˓sAMAccountName and that is
omitted, that's ok. If not specified, we will attempt to find␣

→˓a computer with a name
matching the local system's hostname.

:param computer_password: The password to set for the computer when taking it over.␣
→˓If not specified, a random

120 character password will be generated and set.
:param old_computer_password: The current password of the computer being taken over.␣

→˓If specified, the action
of taking over the computer will use a "change password

→˓" operation, which is less
privileged than a "reset password" operation. So␣

→˓specifying this reduces the
permissions needed by the user specified.

:param computer_key_file_path: The path of where to write the keytab file for the␣
→˓computer after taking it over.

This will include keys for both user and server keys␣
→˓for the computer.

If not specified, defaults to /etc/krb5.keytab
:returns: A ManagedADComputer object representing the computer taken over.

2.1. The ms_active_directory project 113

	Documentation vs. Examples
	Contents
	The ms_active_directory project
	License
	RFCs Compliance
	PEP8 Compliance
	Home Page
	Documentation
	Documentation vs. Examples
	Download
	Install
	GIT repository
	Contributing to this project
	Support
	Contact me
	Donate
	Acknowledgements and Shout-outs
	Documentation Contents
	Primary Objects in ms_active_directory
	ADDomain Objects
	Creating an ADDomain object
	Creating a connection with the ADDomain
	Discovering domain properties
	Managing discovered domain resources
	Joining a domain

	ADSession Objects
	Manually creating an ADSession
	Finding Users, Groups, Computers, and other objects
	Finding and Managing Group Members and Memberships
	Modifying Records Within the Domain
	Creating and Taking Over Objects in the Domain
	Utility Functions For Account Management
	Working With Trusted Domains
	Other Utility Functions

	Secondary Objects in ms_active_directory
	GssKerberosKey Objects
	RawKerberosKey Objects

	Examples of Using Key Features
	Discovering a Domain
	Smart Defaults
	Site Awareness and Flexible DNS
	Network Multi-Tenancy and Security Support
	Local System Configuration

	Discovering Additional Domain Resources
	Finding supported SASL mechanisms
	Finding the current domain time
	Finding the domain functional level
	Finding DNS servers
	Finding CA certificates

	Creating a Session With a Domain
	Support for Computer Authentication
	Support for User Authentication

	Joining an Active Directory Domain
	Join the domain with default configurations for everything
	Join the domain with customization of the account for security reasons
	Join the domain with different network or service settings
	Join using a domain object
	Join the domain by taking over an existing account

	Finding and Working With Trusted Domains
	Turning Trusted Domains into ADDomains
	Transferring Sessions Across Domains
	Expanding A Session To All Its Trusted Domains

	Finding users, computers, and groups
	Looking up users, computers, groups, and information about them
	Look up by sAMAccountName
	Look up by distinguished name
	Look up by common name
	Look up by generic name
	Look up by attribute

	Updating user, computer, or group attributes.
	Appending to one or more attributes
	Overwriting one or more attributes

	Managing User, Computer, and Group Membership
	Finding the members of groups
	Adding users to groups
	Adding groups to groups
	Adding computers to groups
	Removing users, computers, or groups from groups

	Exceptions
	Generating Kerberos Keys From AD Passwords
	Joining an AD Domain
	Joining an AD Domain by taking over an existing computer
	Joining an AD Domain Using an Existing Session
	Joining an AD Domain by taking over an existing computer using an existing session

